
The cerebellum has attracted the attention of theorists
and modelers for many years1–3. The attraction is that the
cerebellar cortex is both quite simple and well documented.
It has only one output cell, the inhibitory Purkinje cell (P-cell),
and four main classes of interneuron; it is also extremely
regular in its cytoarchitecture. Hence, most people believe
that there is a common computational operation performed
by all cerebellar areas, although processing specific inputs and
sending outputs to different extracerebellar targets. However,
knowledge of the anatomical and cerebellar circuitry has out-
stripped our understanding of the function or functions that
the cerebellum performs. In this paper, we will review models
that are aimed at understanding the cerebellum’s possible
role in motor learning and control at the functional level.

The approaches we will review are intimately linked to
the notion that the cerebellum contains an internal model
or models of the motor apparatus. There are two varieties of
internal model, forward and inverse models4,5. Forward
models capture the forward or causal relationship between
inputs to the system, such as the arm, and the outputs. 
A forward dynamic model of the arm, for example, predicts
the next state (e.g. position and velocity) given the current
state and the motor command. In contrast, inverse models
invert the system by providing the motor command that will
cause a desired change in state. They are, therefore, well suited
to act as controllers as they can provide the motor command
necessary to achieve some desired state transition.

In the first two sections, we will review the evidence
that the cerebellum instantiates an inverse and a forward
model, respectively. We show how these models can solve a
specific part of the motor control problem, that of convert-
ing a desired trajectory of the arm or eye into appropriate
motor commands. The final section will consider the ben-
efits of using multiple and paired forward and inverse 
models in motor learning and control. 

The cerebellum as an inverse model
Fast and coordinated arm movements cannot be executed
under pure feedback control because biological feedback
loops are both too slow and have small gains. Two major
feedforward control schemes have been proposed: the equi-
librium-point control hypothesis6–9 and the inverse dynam-
ics model hypothesis4. Some versions of the former scheme
advocate that the central nervous system (CNS) can avoid
complicated computations by relying on the spring-like
properties of muscles and reflex loops. For this mechanism
to work efficiently, the mechanical and neural feedback
gains, which can be measured in the arm as the mechanical
stiffness in perturbation experiments, must be quite high.
Alternatively, the inverse dynamics model hypothesis pro-
poses that during motor learning the CNS acquires an 
inverse dynamics model of the controlled object. Using
such an inverse model the arm can be controlled with quite
low mechanical stiffness. Using a novel mechanical device
(PFM: Parallel link direct drive air and magnet Floating
Manipulandum), the stiffness of the arm was recently meas-
ured during visually guided point to point multi-joint
movements10. The finding of a low stiffness suggests that an
inverse dynamic model is necessary in these well-practised
and relaxed movements.

Acquiring an inverse dynamics model through motor
learning is generally a difficult task because the error in the
model’s output, the motor command error, which could
provide a training signal is not directly available to the
CNS. If the motor command error was known, there would
be no need to learn the inverse dynamics as the correct 
control signal would already be known. Instead movement
errors are initially represented in sensory coordinates, and
these sensory errors need to be converted into motor errors
before they can be used to train an inverse model. For exam-
ple, for arm movement the error may be specified visually or
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through proprioception or cutaneous signals, and these 
errors would need to be converted into errors in the activation
of the muscles. Similarly, in speech the error might be an
acoustic error which would need to be transformed into 
errors in speech articulator muscle activations. Kawato and
colleagues4,11 have proposed a cerebellar feedback-error-
learning model (CBFELM) to resolve this problem.
Figure 1A shows the block diagram and Fig. 1B shows the
corresponding cerebellar neural circuit. The feedback con-

troller transforms the trajectory error, in sensory coordi-
nates, into a feedback motor command, which is then used
to train the inverse model. This training signal therefore
represents the sensory error converted into motor command
coordinates. The sum of the feedforward and feedback
motor commands then acts on the controlled object. In the
cerebellar circuit, simple spikes (SS) represent feedforward
motor commands, and the parallel fiber inputs represent
the desired trajectory as well as the sensory feedback of the
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Fig. 1 The cerebellar feedback-error-learning model (CBFELM). (A) The general feedback-error-learning model. (B) The cerebellar
feedback-error-learning model. The ‘controlled object’ is a physical entity that needs to be controlled by the central nervous system (CNS),
such as the eyes, hands, legs or torso. The controlled object can be considered as a cascade of transformations between motor command
(e.g. joint torques or muscle activations) and linkage motion (e.g. joint angular position, velocity and acceleration), and between this 
linkage motion and the controlled object motion (e.g. spatial position, velocity and acceleration of the hand). Such transformations 
represent the system dynamics and kinematics, respectively. By ‘inverse model’, we mean a neural representation of the transformation
from the desired movement trajectory of the controlled object to the motor commands required to attain this movement goal. Because
the inverse model possesses input–output transfer characteristics that are the inverse of those of the controlled object, the cascade of the
two systems gives an approximate identity function. That is, if a desired trajectory is given to the inverse model, then at the end of the
cascade the actual trajectory will be fairly close to the desired trajectory. Thus, accurate inverse models can be used as ideal feedforward
controllers. An example of the trajectory error is retinal slip for the vestibulo-ocular reflex (VOR) and occular-following responses (OFR).
In engineering, a proportional-integral-derivative controller is often used as a feedback controller. The component of the final motor
command that is generated by a feedback controller is called the feedback motor command.



current state of the controlled object. A microzone of the
cerebellar cortex constitutes (a part of: see below) an inverse
model of a specific controlled object such as the eye or arm.
Most importantly, climbing fiber inputs are assumed to
carry a copy of the feedback motor commands generated by
a crude feedback control circuit. Thus, the complex spikes
(CS) of P-cells activated by climbing fiber inputs are pre-
dicted to be sensory error signals already expressed in motor
command coordinates.

The cerebellar feedback-error-learning model is directly
supported by neurophysiological studies in the ventral
paraflocculus (VPFL) of monkey cerebellum during ocular-
following responses (OFR)12–14. OFR are tracking move-

ments of the eyes evoked by movements of a visual scene
and are thought to be important for the visual stabilization
of gaze. Figure 2 illustrates the neural networks involved in
OFR control and is drawn intentionally to correspond to
Fig. 1B of CBFELM. The phylogenetically older crude
feedback circuit of CBFELM comprises the retina, the 
accessory optic system (AOS) and the brain stem in Fig. 2.
The phylogenetically newer, more sophisticated feed-
forward/feedback pathway and the inverse dynamics model
of CBFELM correspond to the cerebral/cerebellar cortical
pathway and the cerebellar cortex of Fig. 2, respectively.

As shown in the inset of Fig. 2, during OFR, the tem-
poral waveforms of SS firing frequency of VPFL P-cells
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Fig. 2 Summary of the neural networks involved in controlling the occular-following responses (OFR) (A). Insets show the preferred directions of neurons
in different brain regions in response to large visual stimulus motion, which induces OFR. The data of preferred directions of neurons recorded from dorsolateral 
pontine nucleus (DLPN), medial superior temporal area (MST), pretectum (PT) and nucleus of optic tract (NOT) neurons were reproduced, with permission, from
Refs 28,72,73. The pairwise preferred directions of the simple spikes (SS; green line) and the complex spikes (CS; red line) of individual Purkinje cells were 
reproduced from Ref. 12. The temporal waveforms (B) are average firing rates (black) of SS (top) and CS (bottom), and their firing-probability reconstructions by the
inverse dynamics model of the eye movement (green and red). The time course of SS and CS firing rates (black) was accumulated from nine vertical cells over many
trials, aligned with the onset of stimulus motion (time 0). Abbreviations: AOS, accessory optic system; MT, middle temporal area; LGN, lateral geniculate nucleus;
EOMN: extra ocular motor neurons. (Modified from Ref. 72.)



show complicated patterns. However, they (black wave-
form) were quite accurately reconstructed by using an in-
verse-dynamics representation of the eye movement (green
waveform), that is a linear combination of eye acceleration,
velocity and position measured 10 ms (the conduction
delay) after the SS (Refs 13,14). The model fit was good for
the majority of the neurons studied under a wide range of
visual stimulus conditions. The velocity/acceleration coeffi-
cient ratio of the SS was close to that of motoneurons. This
indicates that VPFL P-cells properly encode the dynamic
components of the motor command during OFR.

The same inverse dynamics analysis of firing frequency
was applied to neurons in the medial superior temporal area
(MST) and dorsolateral pontine nucleus (DLPN), which
provide visual mossy fiber inputs to the VPFL (Fig. 2). In
this area, neural firing patterns were not well reconstructed
and, even in the case of a good fit, the velocity/acceleration
coefficient ratio was smaller than those of the SS and motor
neurons15. This suggests that the parallel fiber inputs most
probably provide the desired trajectory information, while
the SS outputs provide the dynamic part of the necessary
motor command. Taken together, these data suggest that
the VPFL is the major site of the inverse dynamics model of
the eye for OFR.

The CBFELM assumes that motor commands, which
are conveyed by SS, are directly modified and acquired
through synaptic plasticity by motor-command errors,
which are conveyed by climbing fiber inputs. For this to
work, the motor commands and climbing fiber inputs must
have comparable temporal and spatial characteristics, but
the extremely low discharge rates of the climbing fibers (1–2
spikes/second) would appear to rule this out. However, as
shown in the inset of Fig. 2, the firing probability of climb-
ing fiber inputs (red) aligned with the stimulus motion
onset was found to have high-frequency temporal dynamics
matching those of the dynamic command signals (green)12.
In this study, firing probability rather than firing frequency
of CS and SS was reconstructed from a generalized linear
model16 based on a binomial distribution of the spike
count. As shown in the inset of Fig. 2, the spatial coordi-
nates of CS (horizontal and vertical axes) were aligned with
those of SS, although the preferred directions were 1808

opposite. The speed-tuning properties of CS and SS were
more linear for eye movement than retinal slip velocity, in-
dicating that CS contains a motor component in addition
to the sensory component identified in previous studies.
Although the temporal patterns of the CS firing probabil-
ities were similar to those of the SS when the sign was re-
versed (although the probability of climbing fibre firing was
overall about 50-times lower than for SS owing to their ex-
tremely low firing frequency), the ratio of velocity and ac-
celeration coefficients used to fit the eye movement data was
less for the CS than that of the SS and was similar to MST
and DLPN, suggesting that CS are more sensory in nature
than SS and carry retinal slip signals in their waveforms.

On a cell-by-cell basis, the CS and SS temporal firing
patterns have negative correlations with regard to their pre-
ferred directions for visual stimulus motion, their average
modulation depths and their temporal firing patterns. A
cross-correlation analysis of SS with CS revealed that short-

term modulation (the brief pause in SS caused by CS) 
accounts for neither the reciprocal modulation of SS and
CS nor these negative correlations; thus, long-term effects
are involved. Overall, these findings support the most criti-
cal assumptions of CBFELM as follows. First, reconstruc-
tion analysis showed that climbing fiber signals carry high-
frequency information that can be read out by P-cells using
the long-term synaptic plasticity as a temporal averaging
mechanism triggered by the stimulus motion onset, which
is detected by parallel fiber inputs. Secondly, climbing fiber
inputs carry sensory error signals already represented in the
motor command coordinates, because their spatial axes are
those of muscles, yet they represent retinal slips in their
waveforms. Finally, because the cell-by-cell CS and SS 
negative correlations cannot be explained by short-term 
effect, innate anatomical connections or general cell prop-
erties, SS waveform of each cell seems to be acquired by
long-term synaptic change controlled by the CS waveform.

Examination of the preferred directions of MST and
DLPN neurons showed that they were evenly distributed
over 3608. Thus, the visual coordinates for OFR are uni-
formly distributed over all possible directions. In distinc-
tion, the extraocular muscles act in either a horizontal or
vertical direction. Preferred directions of P-cell SS were 
either downward or ipsilateral, and at the site of each record-
ing, electrical stimulation of a P-cell elicited eye movement
toward the preferred direction of the SS of that P-cell17.
These data indicate that the SS coordinate framework is al-
ready in that of the motor commands. Thus, at the parallel
fiber–P-cell synapse, a drastic visuomotor coordinate trans-
formation occurs. So, what is the origin of this sensory-
motor transformation (in other words, the inverse kinemat-
ics and dynamics model)? The CBFELM proposes that the
CS and, eventually, the AOS are the source of this motor
command spatial framework. The preferred directions of
pretectum (PT) neurons are upward, and those of nucleus
of optic tract (NOT) neurons are contralateral, and they are
propagated to the inferior olive neurons and the CS of P-
cells. If the parallel fiber–P-cell synapse is potentiated (long-
term potentiation) by the low CS firing rates, and depressed
(long-term depression) by the high CS firing rates, respec-
tively, it is easy to demonstrate that the CS preferred direc-
tions determine the opposite preferred directions of the SS
on a cell-by-cell basis18.

The control of goal-directed arm movements can be
conceptually partitioned into the following three compu-
tational problems: trajectory planning, coordinate transfor-
mation and the calculation of motor commands. The in-
verse kinematics model and the inverse dynamics model
provide efficient computational mechanisms to solve the
latter two problems, respectively. Internal inverse models
are also essential for trajectory planning if the planning
takes into account the dynamics and kinematics of motor
apparatus19. Houk and colleagues20,21 proposed a series of
interesting computational models of the cerebellum that
solve the trajectory planning problem as well as the other
two problems based on the known cerebellar reverberating
circuits22 and Boylls’ model23. For eye movements such as
the OFR or vestibulo-ocular reflex (VOR), the sensory sys-
tem (visual and vestibular) provides the cerebellum with the
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desired trajectory information. Thus, the cerebellum does
not need to plan the trajectory. For limb movements such as
visually guided arm reaching movements, it is unknown
whether the cerebellum receives desired trajectory infor-
mation or whether the desired trajectory is generated within
the cerebellum, as proposed by Houk and colleagues19–21.

This issue of whether the cerebellum is involved in tra-
jectory planning based on positive feedback loops via the P-
cells is also central to the controversy over whether the long-
term synaptic plasticity in the cerebellar cortex is the main
memory mechanism of adaptation of several types of move-
ments, including VOR (Refs 24–26). In Lisberger’s model of
VOR and smooth pursuit, which is computationally related
to Houk and Barto’s more abstract model, the eye velocity
feedback loop back to P-cells is essential for maintaining
smooth pursuit with no retinal slip27. However, for P-cells
in the VPFL, which is the major cerebellar locus of smooth
pursuit control, the SS firing rate correlated well with the
future eye velocity, as predicted by the inverse dynamics
model, but did not correlate with the past eye velocity, as
predicted by the eye velocity feedback theory14. Further-
more, when the target was blanked in the OFR, the activity of
MST (Ref. 28), DLPN (Ref. 73) and VPFL (Ref. 14) suddenly
dropped, along with the eye movement, which is against a
significant contribution of the eye velocity feedback to P-cells.
If eye velocity feedback to P-cells is not significant, many of
the physiological criticisms27 against Ito’s flocculus hypoth-
esis for VOR adaptation no longer hold. We believe that the
resolution of the controversy is possible only by combining
quantitative computational models and rigorous testing of
their predictions by electrophysiological experiments.

Although direct and rigorous support for the CBFELM
described above was limited to a small portion of the cer-
ebellum and for a specific type of eye movement, because the
neural circuit of different parts of the cerebellum is uniform
and long-term depression is ubiquitous, we believe that the
computational principle and neural architecture proven are
universal for all parts of the cerebellum. Recent physiologi-
cal and brain imaging experiments provided further support
to CBFELM for visually guided arm reaching movements29

and learning of a new tool30. It might be worthwhile to note
that the CBFELM predicts that the CS activity remains
even after sufficient learning for feedback control (intuitively
because visual motion cannot be predicted beforehand in
OFR), and even for feedforward movement, the initial burst
of CS remains at the onset of movement because of the time
difference between the desired trajectory and feedback of
the actual trajectory31, which was supported experimentally29.
We also note that CBFELM (Refs 4,11) proposes that a
microzone of the cerebellum, together with other feedforward
control circuits in the brain, constitutes the inverse model
(side-loop model) as in VOR and arm reaching31. 

The cerebellum as a forward model
An alternative hypothesis for the cerebellum, proposed
under a variety of forms32–35, suggests that the cerebellum
generates a forward, causal representation of the motor ap-
paratus, often known as a forward model5,36,37. A forward
model represents the normal behavior of the motor system in
response to outgoing motor commands. Hence, a forward
model of the arm’s dynamics has, as inputs, the current state
of the arm and an efferent copy of motor commands being
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issued by a controller, and produces as output an estimate of
the new state of the arm. This model therefore captures the
state changes in the arm in response to the motor outflow,
which are not directly available to the CNS. One can also
define a forward ‘sensory output’ model of the arm that pre-
dicts the sensory reafferent signals (from sensory ending in
the muscles, joints and skin) that are consequent on a par-
ticular change in state (joint angles and velocities). By link-
ing a forward dynamic and forward sensory output model
in series, an estimate of the sensory consequences of a motor
command can be achieved (Fig. 3).

Why is there any need for such a system of forward
models, as they apparently only reproduce signals about
movement that are already available from the proprioceptive
system? There are many different uses for forward models in
physiological systems (reviewed in Ref. 38); we mention
only one here. It is that forward models provide crucial
motor control signals (the state estimates) that can be used
– and may even be necessary in some circumstances – for
the control of movement. For example, in visually guided
tracking tasks, the subject tries to control his or her hand
position on the basis of visual information from the target
and the hand. This information is delayed by visual pro-
cessing and does not directly inform the CNS about the
changes in muscle forces or even joint angles required to
correct for any movement errors. Likewise, in fast arm move-
ments, sensory feedback can only be used towards the end
of the movement. Hence a forward model can provide the
missing feedback information, in principle with negligible
delay after the issue of a motor command, allowing accurate
tracking. So, although forward models have been described
in terms of the processing state or ‘sensory’ estimates, we think
of the cerebellar forward model forming a crucial element of
the motor control system. In more detail, we have proposed
that the cerebellum may act as a ‘Smith Predictor’34. This is
a control scheme based on forward models, which is designed
to control a system with long transport delays. The delays in
sensory processing, sensory-motor coupling and motor ex-
ecution in physiological systems mean that many sensory
guided behaviors have ‘transport delays’ that are long with
respect to movement duration. The Smith Predictor works
in this situation because it couples a forward model located
within a high gain internal feedback loop with a model of
the transport delays (Fig. 3). The output of the high gain 
internal feedback loop is the motor command, and so pro-
vides an alternative mechanism for generating the feed-
forward motor commands. Thus, the cerebellar forward
model, in a closed loop including motor cortical or brain-
stem circuits, could form an inverse model. This is thus a
variant of previous hypotheses of the cerebellum as a ‘side-
loop’ of the motor pathway. The model of the delays retains
the internal predictions so that they can be compared in
temporal register with the delayed feedback from the move-
ment. Thus, the Smith Predictor has two forward models;
one is a forward model of the arm dynamics, and its output
is a state estimate or prediction, and the other is a forward
output model that transforms and delays the state estimate
to form an estimate of reafference. 

Direct evidence that the cerebellum acts as a forward
model is not yet available; we have reviewed supporting 

evidence elsewhere34,38. In brief, there are data from allo-
metric studies39, from functional imaging studies40–42 and
from clinical studies43,44 showing that the cerebellum is con-
cerned with processing sensory reafference. There are data
from human movement studies (Refs 36,45 and N. Bhushan
and R. Shadmehr, pers. commun.) that are consistent with
learning and use of a forward model, and there are some
data from electrophysiology that also point to the cerebellar
cortex (see below) and the climbing fibers46 having a role
more consistent with sensory reafferent prediction than
with motor command generation. Furthermore, in simu-
lations of the control of the human arm based on the Smith
Predictor47, we demonstrated how an inaccurate forward
model leads to tracking deficits similar to those seen in cer-
ebellar ataxia. To test the hypothesis more directly, we are
currently collecting single cell data from cerebellar cortical
cells and testing whether their responses are more closely
correlated with movement of the hand or with the cursor (a
visual outcome of movement) in a mirror movement task.
Directionally sensitive cells correlating with hand movement
might be encoding the motor command or the propriocep-
tive consequences of movement; but cells that co-vary with
the cursor even when the hand and the cursor move in dif-
ferent directions are more obviously encoding the visual
consequences of movement. Cells coding for the visual goal
of the movement are active before movement onset, and can
be excluded on that basis. We have preliminary evidence
that a significant proportion of directionally sensitive cells
in the intermediate cerebellar cortex are more strongly re-
lated to the direction of cursor movement than to the move-
ment of the hand itself 48. Ebner and Fu49 have data consis-
tent with this, as the activity profiles of their P-cells were
initially correlated with hand movement, but later in each
trial correlated with cursor movement. We have also recently
shown that there is a predictable relationship between in-
creased SS activity and subsequent CS activity ~150 ms
later50. This is consistent with the cerebellar cortical output
being a predictive signal that is actively corrected by climbing
fiber input after a finite delay of 150 ms, which is equivalent
to the prediction interval in this visually guided task.

The Smith-Predictor hypothesis has been criticized on
the grounds that it requires two separate forward models
that are trained simultaneously51. So there is a structural
credit assignment problem facing the action of the climbing
fiber inputs from the inferior olive, which induce long-term
depression of the P-cell inputs from parallel fibers.
However, we assumed in earlier papers that the learning rate
for the two models would be very different, with slow adap-
tation of the model of feedback delays, and faster learning of
the dynamic model; this allows stable learning of both mod-
els47. We have now shown in a human visually guided track-
ing task (Miall and Foulkes, unpublished) that adaptation
to added feedback delays of 200 or 300 ms in a visual track-
ing task is indeed much slower than to changes in task 
dynamics with a time course of several hours. Oculomotor
adaptation is equally slow52. Thus, stable training of both
models with a single error term may not be difficult.
Finally, we still need to be able to demonstrate that the de-
layed error signals from the olive can affect the appropriate
parallel fiber–P-cell synapses, those that were active at least

W o l p e r t  e t  a l . –  I n t e r n a l  m o d e l s

343
T r e n d s  i n  C o g n i t i v e  S c i e n c e s  –  V o l .  2 ,  N o .  9 ,   S e p t e m b e r  1 9 9 8

Review



150 ms previously, a temporal credit assignment problem
faced by many models of motor learning. We are currently
testing models in which the metabotropic receptors on 
the P-cell act to keep a trace of previous input activity 
(M. Malkmus, R.C. Miall, and J.F. Stein, unpublished), in line
with similar models of the cerebellar cortical contribution
to eye-blink conditioning53 or saccadic adaptation54. 

The cerebellum as multiple paired forward and inverse
models
The previous sections have focused on the utility and evi-
dence for either inverse or forward models within the cer-

ebellum for generation of motor commands and control of
movements. In this section, we speculate on the benefits of
multiple internal models and, in particular, the advantages
of pairing inverse and forward models for motor learning
and control. Although the cerebellum has often been
viewed as a modular system3,55, we present a new cohesive
computational framework for motor learning and control.

Humans demonstrate a remarkable ability to generate
accurate and appropriate motor behavior under many dif-
ferent and often uncertain environmental conditions. Con-
sidering the number of objects and environments, and their
possible combinations, that can influence the dynamics of
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Box 1. Multiple paired forward-inverse models 
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The figure shows a schematic of the multiple paired forward-
inverse modela,b. N paired modules are shown as stacked sheets
(the dotted lines represent training signals and 3 signal multipli-
cation). The details of the first module are shown and interactions
between modules take place through the Responsibility
Estimator. Each module consists of three interacting parts. The
first two, the forward model and the responsibility predictor, are
used to determine the responsibility of the module. This respon-

sibility signal reflects the degree to which the module captures the
current context and should, therefore, participate in control. The
aim is that the multiple forward models learn to divide up experi-
ence so at least one forward model can predict the consequence of
performed actions under any given context. The likelihood that a
particular forward model captures the current behavior is deter-
mined from its prediction error. The smaller this error, the more
likely the sensory feedback and efference copy are consistent with



the motor system, the controller must be capable of provid-
ing appropriate motor commands for a multitude of dis-
tinct contexts, such as different tasks and interactions with
objects, that are likely to be experienced. Given this multi-
tude of contexts, there are two qualitatively distinct strat-
egies to motor control and learning. The first is to use a sin-
gle controller that uses all the contextual information in an
attempt to produce an appropriate control signal. However,
such a controller would demand enormous complexity to
allow for all possible scenarios. If this controller were unable
to encapsulate all the contexts, it would need to adapt every
time the context of the movement changed before it could

produce appropriate motor commands – this would pro-
duce transient and possibly large performance errors.
Alternatively, a modular approach can be used in which
multiple controllers co-exist, with each controller suitable
for one or a small set of contexts. Depending on the current
context, only those appropriate controllers should be active
to generate the motor command.

While forward and inverse models could be learned by
a single module, there are three potential benefits in em-
ploying a modular approach. First, the world is essentially
modular, in that we interact with multiple qualitatively dif-
ferent objects and environments. By using multiple inverse
models, each of which might capture the motor commands
necessary when acting with a particular object or within a
particular environment, we could achieve an efficient cod-
ing of the world. In other words, the large set of environ-
mental conditions in which we are required to generate
movement requires multiple behaviors or sets of motor
commands, each embodied within a module. Secondly, the
use of a modular system allows individual modules to adapt
through motor learning without affecting the motor behav-
iors already learned by other modules. Thirdly, many situ-
ations that we encounter are derived from combinations of
previously experienced contexts, such as novel conjoints of
manipulated objects and environments. By modulating the
contribution to the final motor command of the outputs of
the inverse modules, an enormous repertoire of behaviors
can be generated. With as few as 32 inverse models, in
which the output of each model either contributes or does
not contribute to the final motor command, we have 232 or
1010 behaviors – sufficient for a new behavior for every sec-
ond of one’s life. Therefore, multiple internal models can be
regarded conceptually as motor primitives, which are the
building blocks used to construct intricate motor behaviors
with an enormous vocabulary.

Several studies have shown that the motor system is 
able to adapt to multiple different environments. Context
dependent adaptation can be seen if cued by gaze direc-
tion56–58, body orientation59, arm configuration60, an audi-
tory tone61 or the feel of prism goggles62–64. In general, de-
adaptation is quicker than adaptation65, suggesting that
de-adaptation may mainly be a switching process, while
adaptation represents learning a new module. Similarly,
adaptation becomes increasingly rapid when subjects are
presented repeatedly with two different prismatic displace-
ments separated temporally66,67, suggesting that a retained
module can be quickly switched on again in response to the
behavioral context. Data for mixing of two new learned
modules based on prism work68 suggest a specific way that
multiple modules are integrated.

Based on the benefits of a modular approach and the ex-
perimental evidence for modularity, Wolpert and Kawato69,70

have proposed that the problem of motor learning and 
control is best solved using multiple controllers – that 
is, inverse models. At any given time, one or a subset of
these inverse models will contribute to the final motor 
command (see Box 1 for details of the model). However, if
there are multiple controllers, then there must also be some
scheme to select the appropriate controller or controllers at
each moment in time. The basic idea is that multiple inverse
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the context captured by the forward model, and hence the
higher the module’s responsibility. However, the forward
model can only be used to estimate responsibility once a move-
ment has been initiated and the results of action are known. To
allow sensory contextual signal to alter the responsibility prior
to movement, a responsibility predictor estimates the respon-
sibility before movement onset using sensory contextual cues
and is trained to approximate the final responsibility estimate.
By multiplying this estimate (the prior) by the likelihood de-
rived from the forward models, and normalizing across the
modules using the responsibility estimator (with soft-max for
example), an estimate of the module’s responsibility (posterior
estimate) is achieved. 

This responsibility signal represents the extent to which
each forward model/responsibility predictor accounts for the
behavior of the system. It ensures that the smaller the predic-
tion error, the higher the forward module’s responsibility and
vice-versa. The responsibilities are then used to control the
learning within the forward models, with those models with
high responsibilities receiving proportionally more of their
error signal than modules with low responsibility. By weighting
the errors by the responsibility we ensure competitive learning
so that the forward models will learn to divide up the system
dynamics experienced and the responsibilities will reflect the
extent to which each forward model captures the current be-
havior of the system.

For each behavior captured by a forward model we wish to
learn a controller. Hence, the third component of the model is
the inverse model which generate a motor command given a
desired trajectory. Each module has an inverse model which
learns to provide suitable control signals under the context for
which the paired forward model provides accurate predictions.
Again the responsibilities are used to weight the error signal
(the feedback motor command as discussed in the section on
Inverse Models) for each inverse model thereby ensuring that
the inverse model and forward model within a module are
tightly coupled during learning. If one forward model’s predic-
tion is good, its corresponding inverse model receives the major
part of the motor error signal. Finally the responsibilities are
used to determine the extent to which each inverse model’s out-
put contributes to the final feedforward motor command.
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models exist to control the system, and each is augmented
with a forward model that determines the responsibility
each controller should assume during movement. This re-
sponsibility signal reflects, at any given time, the degree to
which each pair of forward and inverse models should be re-
sponsible for controlling the current behavior. Within each
module, the inverse and forward internal models are tightly
coupled during their acquisition, through motor learning.
This ensures that the forward models learn to divide up ex-
perience so at least one forward model can predict the con-
sequence of performed actions under any given context. By
coupling the learning of the forward and inverse models,
the inverse models learn to provide appropriate control
commands in contexts in which their paired forward model
produces accurate predictions.

The responsibilities are determined by two distinct
processes (see Box 1). The first uses sensory contextual cues
to predict the responsibility of the module and can therefore
select controllers prior to movement initiation. The second
process uses the forward model’s predictions. As each for-
ward model captures a distinct dynamical behavior of the
motor system, their prediction errors can be used during
movement to determine in which context the motor system
is acting.

This scheme based on multiple paired forward-inverse
modules is capable of learning to produce appropriate
motor commands under a variety of contexts and can
switch rapidly between controllers as the context changes.
These features are important for a full model of motor con-
trol and motor learning, as it is clear that the human motor
system is capable of very flexible, modular adaptation. We
propose, therefore, that the cerebellum contains multiple
pairs of corresponding forward and inverse models, each in-
stantiated within a microzone. The modular and repetitive
architecture would include the forward and inverse models
of the previous sections and we are currently investigating
the ways in which its computational circuit diagram could
map onto the neural networks in and around the cerebellum.

Conclusion
Internal models provide a firm computational foundation
from which theories of the cerebellum can be considered.
We have reviewed the evidence that the cerebellum contains
inverse or forward models of the motor system. By consid-
ering the possibility that the cerebellum contains multiple
pairs of forward and inverse models, we believe that the
benefits of both views can be retained and integrated. Such
a paired system would results in computational advantages
in both motor learning and control.
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