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1Research Update

Research News

An interesting theory of sensorimotor control

has been recently extended and simulated.

The simulation can learn to control an arm

in several mutually exclusive ‘contexts’,

situations where the arm carries one of four

objects with different mechanical properties.

It provides a good theoretical framework for

testing biological motor systems.

We live and move in a complex

environment. Each morning, without

apparent effort, we can put on a heavy coat,

pick up a briefcase, drive or cycle to work,

then navigate around a computer screen

all day long using a mouse, and later work

out on the squash courts. Even if you do

only some of these, think for a moment of

the challenges facing our sensorimotor

system. Not only do we control our bodies

but we do so despite constraining clothes

and added weights on our limbs; we treat

all manner of mechanical devices as if they

were extensions of ourselves; and we cope

with complex visuomotor transformations

between eye and hand. How can we do so

many different things so well?

One answer is that we have the ability

to adapt to new situations, and so modify

the appropriate neural circuits. But a more

intriguing answer is that we appear to treat

each situation as different, and develop and

switch between control circuits appropriate

for each sensorimotor ‘context’. The way

the brain learns control under each new

context without forgetting the old ones is

being explored by computational theory.

An extended sensorimotor model

Haruno, Wolpert and Kawato [1] have

recently extended their earlier work [2]

on ‘MOSAIC’ (modular selection and

identification for control) to the point where

they now show full simulations of a model

that can learn and operate in multiple

different sensorimotor contexts. The key

feature of their system is that it uses

modular pairs of forward and inverse

models, and a ‘responsibility signal’

calculated for each module (see Box 1). In

each module, the forward model generates

a prediction of the outcome of the motor

commands being issued. If the prediction is

confirmed by reafferent feedback, then that

pair of forward and inverse models must

have been right for the current situation,

and they should assume high responsibility

for that action. Other modules would not

be have been so appropriate; their

predictions would be inaccurate, and so

their responsibility should be low.

In fact, the complete system that

Haruno et al. report has several elements

that tie together previous models. There is

an underlying feedback control loop that

drives the actions when the internal models

cannot. The feedback-error signal [3] is then

used to drive learning in the internal models,

weighted by the responsibility signal for

each, so that a forward/inverse pair that is

close to a desired controller for the current

context is modified, whereas modules that

have low responsibilities are hardy affected.

This allows separate modules to develop for

each control context, without overwriting

existing modules [2]. The advantage of using

feedback-error learning is that the goal of

the algorithm is clear cut: it aims to reduce

the error in the output of the controller to

zero, by a gradient-descent learning rule.

Thus, when or if the feedback-error signal

is reduced to zero, the system has achieved

an ideal controller. It is probably a more

realistic, and more reliable, scheme than

other identification algorithms which aim

to produce an ideal inverse of the system

they control [4].

Predictions

MOSAIC also uses responsibility predictors,

which use feedforward signals to estimate

the context and can thus bias the

responsibility signal even before any action

is made. This uses a simple 25-pixel neural-

network ‘retina’ to recognize shapes and

learn the relationship between each shape

cue and the object. It then uses a feedback

update rule, based on the hidden Markov

model, to smooth the likely transitions

between contexts. For example, we rarely

encounter objects whose physical properties

instantly change, so prior knowledge about

the very last context can be used to calculate

the probability of the current context [5],

and the transition between contexts is

probabilistic. In this way, the visual input

selects the appropriate control module

based on prior knowledge, and the

evolving reafferent signals during the

action either confirm that the context is

the one originally assumed or signal that

a shift in context has occurred.

Fitting the model in the brain

Haruno et al.’s simulation has many

elegant aspects, and the demonstration of

a working model is of course an important

step. It is worth considering how this

computational system might be achieved

in the brain, and how we might test the

model’s predictions. For example, the

responsibility predictor must use external

signals, from vision, to influence the choice

of control modules. These visuomotor

relationships are learnt and probably

involve dorsal premotor, ventral prefrontal

and basal ganglia circuits [6]. So one might

test whether predictive control, or updates

of context estimates, require these areas.

Next, the motor command output of the

whole MOSAIC system is a weighted sum,

combining the output of the inverse models

within each module, independently

weighted by their responsibility signals.

This summed output must descend to the

motorneurons, either directly or via the

descending cortico-spinal pathways. The

responsibility signal thus selects between

MOSAIC modules after ‘softmax’

normalization, calculated from the

combined responsibilities of all modules.

In turn, the error in each forward-model

prediction needs to be normalized to all

other forward-model errors, and these

then modulate the output of each inverse

model according to the reciprocal of the

errors; small prediction errors mean high

responsibility and vice versa. The

feedback-error signal reflects the output

of the underlying feedback loop, and in

the original proposal [7] was carried to the

cerebellum by complex spike activity.

Could these various architectural

demands constrain the circuitry enough to

localize it? My own instinct is to assume

that the forward models are held in the

cerebellum [8], and interact with inverse

models perhaps in the motor cortex; the

authors’ instinct is to put both forward

and inverse models in the cerebellum.

Modular motor learning
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Questions to resolve

There are also important unanswered

questions about the modular architecture

that Haruno et al. propose. One is the

extent of generalization they demonstrate.

They have shown that if the system is

trained to control four different physical

objects (differing in mass, damping and

spring constants), it can also control a

novel one that is close to the centre of the

3-D space describing the original four.

But if the new object is not within this

space, the system cannot control it. So

how fine-grained should we expect the

representation of contexts to be? Do we

need new modules for every different

object (full coffee cup, half-empty coffee

cup, etc.)? In fairness to the authors, we

should not look to their work for the

answer here, as it is likely that any

biological system will tolerate some degree

of inaccuracy in control, and compensate

for the difference with corrective

movements. Moreover, extended

experience in a context will probably lead

to a module with finer resolution. But it

does raise the question of when an

existing module might be modified,

rather than developing a new module.

Next, how does the nervous system

assign resources to modules? We are born

with a more or less blank slate, and learn

new motor behaviours sequentially

throughout life. So does the CNS have a

rule to keep some modules uncommitted

until they are eventually required, or does

it reassign existing modules to new tasks?

In either case, is there some limit to the

number of separate modules it can hold?

This leads to the question of the extent

to which MOSAIC modules can be

combined. The most efficient outcome

would be if the forward/inverse models

could be linearly or non-linearly combined.

For example, if a model of my arm could be

combined with a module that coded in

some way for another object, then could I

combine the two models to predict how my

arm behaves when I pick up the object?

This is apparently not a trivial problem:

the maths suggests that the forward

models can be combined more easily than

the inverse models, but both would need

to be combined for the scheme to work.

Finally, Haruno et al.’s simulations

assume that there are negligible delays in

the control pathways, but this is not true

for biological systems because the sensory

pathways, central neural computation,

and efferent pathways all have significant

delays. In MOSAIC, the internal

predictions generated by the forward

models are compared with the reafferent

signal one computational time step ahead,

but with physiologically delayed feedback

this would introduce an error [8]. We can

adapt to these errors – will MOSAIC?
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The motor system can be simplified into a
‘black box’ (Fig. Ia) that represents the
dynamics of the spinal circuitry,
skeletomuscular apparatus, and any
additional objects that are being controlled,
such as a squash racquet. Depending on
the current state of this system, a motor
command will cause it to move into a new
state, detected by sensory channels
(vision, proprioception), which might also
contribute to the overall dynamics.

An ‘inverse model’ (Fig. Ib) describes
the reverse of this control pathway: given
the current state, it generates an estimate

of the motor command necessary to
reach a desired sensory state. So the
input is desired feedback or state, and the
output is a motor command. By contrast,
a ‘forward model’ (Fig. Ic) is an exact
mimic of the motor system, and can
generate an estimate of the sensory state
that would be achieved if a motor
command was followed.

The MOSAIC system uses multiple
pairs of linked forward/inverse models
(Fig. Id; only 2 of each are shown here for
simplicity). The inverse model outputs are
weighted by current estimates of the

context (blue dashed lines) and summed
together (blue circle) so that the most
appropriate inverse model contributes
most to the total motor command. An
efferent copy of the combined motor
command is then fed to each forward
model that predicts the outcome. A reality
check is performed, and the estimate of the
context updated. Predictive visual cues
can bias the context estimation before
movement onset (red inputs). Other
elements, such as an overall feedback
loop and the training signals used to teach
the models have not been not shown.

Box 1. Models

Fig. I. Models of the motor system. (See text for explanation.)
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Are psychology’s tribes ready to form a nation?

Daniel Gilbert

Collaboration between social psychologists

and cognitive neuroscientists is giving rise

to a new approach that its practitioners call

‘social cognitive neuroscience’. Scientists

from each discipline are using the theories

and techniques of the other to generate

new answers to fundamental questions

about attitudes, beliefs, the self, moral

judgment, and other issues. Is this

interdisciplinary endeavor an exercise in

wishful thinking and good intentions, or

is it a preview of psychology’s future?

Several decades ago, an eminent

psychologist defined the field of psychology

as ‘a bunch of men standing on piles of their

own crap, waving their hands and yelling

“Look at me, look at me!” ’Fortunately,

things have changed quite a bit over the

years, and the field is no longer composed

entirely of men. The criticism is overstated,

of course, but it does highlight one of

psychology’s most troubling shortcomings,

namely, that psychologists often ignore

work outside their own laboratories,

usually ignore work outside their own

sub-specialties, and almost always ignore

work outside their own discipline. This

parochialism is especially pronounced

during transitional moments in the field’s

evolution, when the excitement generated

by new ideas and new technologies seems

to justify the sweeping away of history.

The emergence of cognitive

neuroscience was one of the signal events in

20th century psychology, and psychologists

have good reason to be optimistic about its

future. How brains make minds is the

critical missing piece in psychology’s

analysis of human behavior, and during the

next few decades, cognitive neuroscience is

sure to produce many useful insights and

perhaps a few stunning ones. Alas, if this

new enterprise is anything like its

ancestors, its early impulse will be to

invent itself by ignoring as much of the rest

of psychology as it can get away with, and

there is already some evidence of this.

Descartes made many errors, but failing to

read his peers was not among them.

Given psychology’s tendency to start

each revolution from scratch, it is

heartening to note that some researchers

are making a concerted effort to ensure

that cognitive neuroscience does not make

the same mistake. In a recent article,

Kevin Ochsner (a cognitive neuroscientist

at Stanford University, CA, USA) and

Matthew Lieberman (a social psychologist

at UCLA, Los Angeles, CA, USA) have

issued a clarion call for the integration of

the neurological, cognitive and social

levels of analysis [1]. Like most clarion

calls, theirs is full of good intentions.

Unlike most clarion calls, it is also full of

good ideas about how to carry out that

mission, and full of evidence that the

integration is already underway. Ochsner

and Lieberman review several problems

on which cognitive neuroscientists and

social psychologists are now working

together, for example, the role of amygdala

activation in stereotyping, hemispheric

asymmetries and self-knowledge, amnesia

and attitude change, and the role of the

lateral fusiform gyrus in dispositional

attribution. In each instance, Ochsner

and Lieberman demonstrate how the two

fields are collaborating, converging, and

informing one another. The reason for this

mutual attraction is obvious: cognitive

neuroscience offers a new set of tools with

which to examine enduring problems and

holds out the prospect of grounding

behavior in biology, whilst social

psychology offers a treasure trove of

theory and data about the kinds of

problems our social brains were evolved to

solve, and the kinds of solutions they have

actually generated. The fruits of this

social–cognitive neuroscience approach

are already clear: Articles have appeared

in leading journals, conferences on social

cognitive neuroscience (most notably

those sponsored by Dartmouth University

and UCLA) have attracted bright young

people and well-established leaders from

both disciplines, and federal granting

agencies are paying the kind of attention

that counts.

As with any marriage of true minds,

this one admits of impediments, and these

have mainly to do with the misgivings and

misunderstandings that naturally arise

whenever different tribes meet at the

watering hole. In the privacy of their

laboratories, social psychologists often

marvel at the naïveté of neuroscientific

research on ‘social cognition’, which all too

often assumes that anything that hasn’t

been studied in a scanner hasn’t been

studied at all. Cognitive neuroscientists

are similarly likely to roll their eyes at the

naïveté of social psychologists, who happily

(or haplessly) develop mentalistic theories

without stopping to ask whether the

‘machine’ is actually capable of running

the software. All of this may be true, but

Ochsner and Lieberman have shown that

some scientists have set aside their tribal

prejudices long enough to recognize that

although both disciplines can get along just

fine without the other, both are enhanced

when they do what they do best in each

other’s company. If Ochsner and

Lieberman are right, psychologists might

someday find themselves standing atop one

giant heap, yelling ‘Look at us! Look at us!’
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