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Abstract

Application of coherence estimation needs not only to correctly estimate coherence values but also to efficiently test the statistical significance
of the estimates. In the present report, we have explained the approach of optimising a coherence estimator by restricting its normalised bias
error and random error. In addition to the commonly used independence threshold, two more tests based on the probability of detection and
the exact confidence interval have been proposed for detecting the significance of the coherence estimates. All three methods have been used
to evaluate the significant functional correlation between oscillatory field potentials (FPs) in the subthalamic nucleus (STN) and the surface
electromyogram (EMG) of the forearm muscles during tremor in Parkinson’s disease.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

One widely used method of estimating the functional
coupling between two oscillatory signals is the magnitude
squared coherence (MSC) estimation. The MSC is a nor-
malized cross-spectral density function, and measures the
strength of association and relative linearity between two
stationary processes on a scale from 0 to 1 (Bendat and
Piersol, 1993; Brillinger, 1975; Carter, 1987; Halliday et al.,
1995). In order to test the significance of the coherence and
use it in practical applications properly, it is highly desir-
able to compute the statistics of the estimator exactly. The
exact and asymptotic expressions have been deduced for the
probability density function, cumulative distribution func-
tion, and for the bias and variance (Brillinger, 1975; Carter,

Abbreviations: STN, subthalamic nucleus; FPs, field potentials;
DBS, deep brain stimulation; EMGs, electromyograms; MSC, magnitude
squared coherence
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1987; Carter et al., 1973; Clausen and Cochran, 2001).
However, a significant limitation encountered in application
of the MSC estimate is that only in some particular condi-
tions, for example when coherence is 0 or 1, it is possible to
provide the closed-form expression for the confidence inter-
val. In other situations, the confidence interval is only given
approximately (Bendat and Piersol, 1993, 2000; Brillinger,
1975; Carter, 1987; Carter et al., 1973). Consequently, the
distribution range of coherence estimates and the compari-
son between different coherence estimates are questionable,
especially when the amount of data is relatively limited.
Furthermore, to avoid inadequate and inaccurate estima-
tion, the performance of an estimator and its validation on
the data to be analysed needs to be evaluated, and the esti-
mation may require multiple statistical tests. In this study,
we validated the estimation by limiting the normalised bias
error and the random error. In addition to the existing statis-
tical test for independence between two signals, two extra
statistical tests are proposed: (1) to measure the probability
of detection of the MSC estimates to confirm the existence
of significant linear association; and (2) to apply the exact
confidence intervals based on the cumulative distribution
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function, which can be used to determine the significance
of the estimation differing from 0 and the significance of
the differences of components at different frequencies.

Oscillatory neural activity in deep brain structures has
attracted much interest in both clinical practice and research
on movement disorders and other neurological conditions
(Brown et al., 1999; Liu et al., 2001, 2002a,b; Marsden
et al., 2000). Although there are still uncertainties about
the precise function and genesis of the oscillations, analysis
of functional coupling between simultaneously recorded
oscillations at different levels of the motor system has
provided important information. It has led not only to a
better understanding of the pathophysiological mechanisms
of movement disorders but also to better localization of
targets for deep brain stimulation (DBS). However, these
symptom-related muscular and neuronal signals are only
stationary over a short period, are contaminated with noise,
and their coherence is relatively weak. These features of the
real physiological signals present particular technical chal-
lenges for investigating the functional correlation between
simultaneously recorded neuronal and muscular signals.

Hence, in this report, we propose algorithms for opti-
mising a coherence estimator and generating supplementary
statistical tests. We present an example of applying these
procedures in assessing the functional correlation between
tremor-related oscillatory field potentials (FPs) and the elec-
tromyogram (EMG) in patients with Parkinson’s disease.

2. Methods

2.1. Magnitude squared coherence estimation

The MSC function between two jointly stationary stocha-
stic processesx(t) andy(t) is defined by:

γ2
xy(f) = |Pxy(f)|2

Pxx(f)Pyy(f)
(1)

wherePxy(f) is the complex cross-spectral density, andPxx(f)
and Pyy(f) are the auto-spectral densities at frequencyf
(Bendat and Piersol, 1993, 2000; Brillinger, 1975; Carter,
1987; Halliday et al., 1995).

MSC can be estimated using the weighted overlapped-
segment averaging method based on fast Fourier transform.
In this method, two signals are divided intond disjoint seg-
ments; each segment is multiplied by a smooth weighting
window, and then the averaged cross-spectra density and
the auto-spectral densities are obtained from thend seg-
ments. MSC is the normalized cross-spectral density by the
auto-spectral densities.

γ̂2
xy(f) =

∣∣∑nd
i=1Xi(f)Y∗

i (f)
∣∣2∑nd

i=1 |Xi(f)|2∑nd
i=1 |Yi(f)|2 (2)

Here, * denotes the complex conjugate,Xi(f) andYi(f) are the
fast Fourier transform (FFT) of theith of the weighted seg-

ments of the stochastic processesx(t) andy(t) (Bendat and
Piersol, 1993; Brillinger, 1975; Carter, 1987; Carter et al.,
1973). The stochastic processes are assumed to be 0 mean,
jointly stationary Gaussian stochastic processes. To obtain a
reliable estimator, some assumptions are necessary (Halliday
et al., 1995; Scannell and Carter, 1978). They are that: (a)
the data segments are independent, (b) the data segments
are multiplied by a smooth weighting window to reduce
sidelobe leakage, (c) each data segment is sufficiently long
to ensure adequate spectral frequency resolution and reduce
the bias, and (d) the number of the data segments is sufficient
to make the estimator achieve reliable statistic performance.

2.2. Optimisation of a coherence estimator

2.2.1. Probability density function, cumulative distribution
function, bias error and random error

Given the true value of coherenceγ2
xy and the number

of non-overlapped data segmentsnd, the probability density
function and the cumulative distribution function of the es-
timator are (Carter, 1987):

p(γ̂2
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2
xy) = (nd − 1)

(
(1 − γ̂2

xy)(1 − γ2
xy)

(1 − γ̂2
xyγ

2
xy)

2

)nd

×
(

1 − γ̂2
xyγ

2
xy

(1 − γ̂2
xy)

2

)
2F1(1 − nd, 1 − nd; 1; γ̂2

xyγ
2
xy) (3)

P(γ̂2
xy|nd, γ

2
xy) = γ̂2

xy

(
1 − γ2

xy

1 − γ̂2
xyγ

2
xy

)nd nd−2∑
k=0

×
(

1 − γ̂2
xy

1 − γ̂2
xyγ

2
xy

)k

2F1(−k, 1 − nd; 1; γ̂2
xyγ

2
xy) (4)

The hypergeometric function2F1 can be computed itera-
tively whenγ2

xy is not equal to 0 (Carter, 1977, 1987).

2F1(−k, 1 − nd; 1; γ̂2
xyγ

2
xy) =

k∑
i=0

Ti (5)

whereT0 = 1 and

Ti

Ti−1
= (i − 1 − k)(i − nd)γ̂

2
xyγ

2
xy

i2

The exact expression of the bias and variance (Carter,
1987) are:

B = 1

nd
+ nd − 1

nd + 1
γ2

xy2F1(1, 1; nd + 2; γ2
xy) − γ2

xy (6)

V = 2(1 − γ2
xy)

nd

nd(nd + 1)
3F2(3, nd, nd; nd + 2, 1; γ2
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(7)
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where 3F2 is a five parameter Gaussian hypergeometric
function. The greatest bias is 1/nd when the MSC equals 0
and greatest variance is (2/3)3/nd when the MSC equals one
third. The ratio of bias andγ2

xy is the normalized bias error

εb and the ratio of variance andγ2
xy is the random errorεr.

2.3. Exact confidence interval of coherence estimates

The confidence interval of the coherence estimates can be
derived from the central probability interval of the cumula-
tive distribution function (Carter, 1987; Stuart et al., 1999,
2001). Given a true coherence valueγ2

xy, there is a central

probability interval [AL(γ2
xy), AU(γ2

xy)] which meets the fol-
lowing conditions,

P(γ̂2
xy ≤ AL(γ2

xy)|nd, γ
2
xy) = α0 (8a)

P(γ̂2
xy ≤ AU(γ2

xy)|nd, γ
2
xy) = 1 − α0 (8b)

ThenP(AL(γ2
xy) ≤ γ̂2

xy ≤ AU(γ2
xy)|nd, γ

2
xy) = 1−2α0. It is a

reasonable assumption thatAL(γ2
xy) andAU(γ2

xy) are mono-

tonically increasing withγ2
xy and are continuous (Carter,

1987). Then we have,

Pr(A−1
U (γ̂2

xy) ≤ γ2
xy ≤ A−1

L (γ̂2
xy)|nd, γ

2
xy) = 1 − 2α0 (9)

Therefore, the confidence interval forγ̂2
xy is [A−1

U (γ̂2
xy), A

−1
L

(γ̂2
xy)] with confidence coefficient 1− 2α0.

Usually the functionsAL(γ2
xy), AU(γ2

xy), A−1
U (γ̂2

xy) and

A−1
L (γ̂2

xy) are unknown. We provided an iterative algorithm
to obtain the solution (more details on the iterative algorithm
can be found inWang and Tang, 2004). Given the number of
disjoint segmentsnd and the true coherence valuesγ2

xy, the

cumulative distribution function corresponding toγ̂2
xy can be

computed as described above (4) (Fig. 2(a)). Therefore, the
value ofγ̂2

xy is AL(γ2
xy) or AU(γ2

xy) while the value of cumu-
lative distribution function equals lower or upper probability
limit. The lower and upper probability limits are 0.05 and
0.95 in order to estimate the confidence intervals with 0.90
confidence coefficient (Fig. 2(a)). AL(γ2

xy) or AU(γ2
xy) can

be obtained when the cumulative distribution function ap-
proaches to the lower or upper probability withγ̂2

xy modified
iteratively (Fig. 2(b)).

After γ2
xy(i) ∼ AL(γ2

xy(i)) andγ2
xy(i) ∼ AU(γ2

xy(i)) curves

are computed using above iterative algorithm,γ̂2
xy(i) ∼ A−1

U

(γ̂2
xy(i)) andγ̂2

xy(i) ∼ A−1
L (γ̂2

xy(i)) can be obtained by reflec-

ting the curves across the lineγ2
xy = AL(γ2

xy) or γ2
xy = AU

(γ2
xy).

2.4. Statistical tests for the significance of
independence and coherence

One way of determining the significance of the estimated
coherence is based on the confidence interval of the esti-
mates. Given the true value of coherenceγ2

xy and the num-
ber of disjointed data segmentsnd, the exact forms of the

conditional probability density functionp(γ̂2
xy|nd, γ

2
xy) and

the cumulative distribution functionP(γ̂2
xy|nd, γ

2
xy) of the

estimator can be obtained from (3) and (4). From the prob-
ability density function, a thresholdEI is defined to test the
independence at a given probabilityPI (10). The hypothesis
of MSC = 0 at each frequency value rather than the whole
spectrum is then tested against the independence thresh-
old EI (11) (Brillinger, 1975; Carter, 1987; Halliday et al.,
1995; Zaveri et al., 1999). Coherence estimates below this
threshold suggests that the two processes are independent.

PI =
∫ EI

0
p(γ̂|nd, 0)dγ̂ =

∫ EI

0
(nd − 1)(1 − γ̂)(nd−2)dγ̂

(10)

EI = 1 − (1 − PI)
1/(nd−1) (11)

We set the level of significanceα = 0.05, then the confi-
dence interval forγ2

xy = 0 is [0, EI ] with confidence coeffi-
cient 0.95 andPI is 0.95. The one side confidence interval
for γ̂2

xy is [A−1
U (γ̂2

xy), 1] with confidence coefficient 0.95.

Here A−1
U (γ̂2

xy) equals the lower confidence limit of the
both sides confidence interval with confidence coefficient
0.90, which can be computed using the method described
in 2.2. The hypothesisH0: MSC > 0 againstH1: MSC = 0
is tested by the comparison of the confidence intervals. If
A−1

U (γ̂2
xy) > EI , H0 is accepted withα < 0.05, the MSC

is larger than 0 significantly and there is true coherence
between the two processes.

Another way to determine the significance of the co-
herence estimate is based on the probability of detection.
Coherence estimates below the independence threshold sug-
gest that the two signals being analysed are independent. On
the other hand, the coherence estimates above the threshold
EI can be seen as the evidence of linear association between
two processes at a certain probability of detectionPD (11)
(Carter, 1987; Zaveri et al., 1999), and the probability of
detectionPD is computed as

PD =
∫ 1

EI

p(γ̂|nd, γ
2
xy)dγ̂ = 1 − P(γ̂ ≤ EI |nd, γ

2
xy) (12)

The true coherenceγ2
xy is unknown in most situations.

For practical application, one way is to replaceγ2
xy with

the estimated coherencêγ2
xy while the number of the data

segmentsnd is large andγ̂2
xy is great enough.

3. EMG and LFPs recording

Local field potentials (LFPs) were recorded from the sub-
thalamic nucleus (STN) in three patients after implantation
of chronic stimulation electrodes for alleviating their Parkin-
sonian symptoms at Radcliffe Infirmary, Oxford. Informed
consent from the patients and the approval of the local
ethics committee were obtained for this research. Detailed
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surgical and neurophysiological procedures have been de-
scribed previously (Liu et al., 2001, 2002b). The LFPs were
recorded via the implanted electrode (DBSTM, models 3387
Medtronic®). All signals were filtered with bandwidth of
0.5–1000 Hz, sampled at 4000 Hz, amplified at 1000× (CED
1902, Cambridge Electronic Design, UK) and digitized with
16-bit resolution (CED 1401, Cambridge Electronic Design,
UK). Surface EMGs from the contralateral forearm exten-
sor (carpi ulnaris) and flexor (digitorum profundus) were
simultaneously recorded while the patients were sitting. The
EMGs were filtered between 31 and 2000 Hz to reduce the
sustained activity imposed on the rhythmic tremor activity
using discrete wavelet transform.

4. Computing

Computation of the cumulative distribution functions,
exact confidence intervals, relationship between thend
value and coherence at the given normalized bias error and
random error, the probability of detection and coherence
estimation between STN FPs and EMGs was performed
using MATLAB (Version 5, MathWorks Inc., Natick, MA,
USA). The coherence was estimated using 150 s data with
15 or 2 s non-overlapping windows, which gives a value of
nd = 10 or 75.

5. Results

Four levels of the normalized bias error curves and three
levels random error curves are illustrated inFig. 1. While
the coherence increases, in order to keep the normalized bias
error or the random error at the specified level, the neces-
sary minimum number of data segments decreases gradually.
However, while the coherence approaches 0, the necessary
number increases dramatically. If the coherence is 0.3, the
necessary number to keep the normalised bias error= 0.1
is 17 while 81 data segments are needed to keep the ran-
dom error= 0.2. The number of segments needed increases
to 181 and 908, respectively, if the coherence is 0.05. The
shadow areas indicate the normalized bias error below 0.1
(Fig. 1(a)) and the random error below 0.2 (Fig. 1(b)). So the
bias error and random error of the data can be determined
from Fig. 1. If the coherence is likely to be low, the number
of data segments must be high enough to keep the random
error and bias error within an acceptable level. Hence, one
can estimate thend required to ensure a particular level of
coherence estimates credible with acceptable error.

The cumulative distribution functions of̂γ2
xy for γ2

xy =
0.05, 0.5 and 0.9 andnd = 10 are illustrated inFig. 2(a).
When the cumulative distribution functions equal to the up-
per or lower probability limits 0.95 or 0.05, the correspond-
ing values ofγ̂2

xy which are computed using the iterative
algorithm, are used to construct the central probability inter-
val γ2

xy(i) ∼ AU(γ2
xy(i)) or γ2

xy(i) ∼ AL(γ2
xy(i)) (Fig. 2(b)).

Then the confidence interval with confidence coefficient 0.9

Fig. 1. Relationship between thend value and coherence at the given
normalised bias error and random error. (a) The normalized bias errorεb

at levels of 0.1, 0.05 and 0.01. The shadow area indicates the normalized
bias error larger than 0.1. (b) The random errorεr at levels of 0.3, 0.2,
0.1 and 0.01. The shadow area indicates the random error larger than 0.2.
When estimated MSC is weak with a small value, a largend value is
required to assure the bias and random error being kept at an acceptable
level.

γ̂2
xy(i) ∼ A−1

U (γ̂2
xy(i)) andγ̂2

xy(i) ∼ A−1
L (γ̂2

xy(i)) are acquired

by reflecting the curves across the lineγ2
xy = AL(γ2

xy) or

AU(γ2
xy).

The exact confidence intervals with confidence coefficient
0.9 fornd = 10, 50, 100 and 200 are drawn inFig. 3. When
the nd equals 10, the peak value of 95% confidence inter-
val deduced from the cumulative distribution function at the
MSC estimate 0.33 is 0.00–0.62. The interval decreases to
0.25–0.40, as thend becomes 200. Thus, the 95% confidence
interval narrows whennd increases. The confidence intervals
are 0.13–0.27 and 0.32–0.47 for the MSC estimates of 0.20
and 0.40, respectively, whennd equals 200. There is no over-
lap between these two confidence intervals; suggesting that
there is a significant difference between the MSC estimates
of 0.20 and 0.40. Whilend increases, the confidence bound
becomes narrower. While the coherence approaches to 0 or
1, the confidence bound becomes 0. The largest confidence
bound occurs with coherence at 1/3. The confidence upper
and lower limits increase monotonically and continuously.

The detection probabilityPD increases with the coherence
value. The detection probability is beyond the significant
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Fig. 2. The cumulative distribution functions of (a) forγ2
xy = 0.05,

0.5 and 0.9 and (b) the curvesAL (γ2
xy(i)) ∼ γ2

xy(i) (open symbols)

and AU(γ2
xy(i)) ∼ γ2

xy(i) (solid symbols) derived from the cumulative

distribution functions forγ2
xy(i) = 0.05, 0.5 and 0.9 whilend = 10. The

dotted horizontal lines indicate the upper and lower probability limits
0.975 and 0.025.

level 0.95 when the coherence is larger than a threshold
value (Fig. 4). This threshold value decreases whilend in-
creases. Fornd 10, the independence thresholdEI is 0.283,
but γ2

xy is 0.525 while the detection probability equals to
0.95. However, fornd 200, the independence thresholdEI is
0.015,γ2

xy only reaches as small as 0.038 whilePD equals
to 0.95 (Table 1). Furthermore, the detection probability
P ′

D is estimated using the biased coherence valueγ2
xy + B.

For nd 10, 50, 100 and 200,P ′
D equals near to 0.97 while

the true detection probability is 0.95 (Table 1). The small

Table 1
The detection probabilityPD computed from the true coherenceγ2

xy and P ′
D computed from the biased coherenceγ2

xy + B while they are above the
independence thresholdEI

γ2
xy PD P ′

D PD P ′
D PD P ′

D PD P ′
D

0.038 – – – – 0.698 0.800 0.95 0.969
0.074 – – 0.697 0.796 0.95 0.969 0.999 1
0.142 – – 0.95 0.969 0.999 1 1 1
0.525 0.95 0.964 1 1 1 1 1 1
nd 10 50 100 200
EI 0.283 0.059 0.030 0.015

B is the bias of the estimator;nd, number of disjoint data segments. The biased probability of detection is near to 0.97 while the true value is 0.95.

Fig. 3. The exact confidence intervals with 0.90 confidence coefficient
when nd = 10, 50, 100 and 200. The pair curves are the upper and
lower confidence limits of the coherence estimates. Whilend increases,
the confidence bound becomes narrower. While the coherence approaches
to 0 or 1, the confidence bound becomes 0. The largest confidence bound
occurs with coherence at 1/3. The confidence upper and lower limits
increase monotonically and continuously.

Fig. 4. The probability of detectionPD corresponding toγ2
xy with nd = 10,

50, 100, and 200. The linear association between the random processes
can be announced at the probability of detectionPD corresponding to a
MSC value. To reach a significant probability of detection, a largend is
required for detecting small MSC values. The dotted line indicates the
significant probability of 0.95.
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significant coherence can be detected while the number of
data segments is large.

As an example of applying these method to physiological
data, the coherence estimation between flexor EMG and
the STN FPs recorded from a Parkinsonian patient during
tremor was performed over windows of 15 or 2 s in length.
These window lengths gave the frequency resolution of
0.067 or 0.5 Hz for presenting the coherence in the tremor
frequency. The overall length of the signal analysed was
150 s, which provided 10 or 75 non-overlapped windows.
The results showed that there were two dominant peaks be-
yond the independence threshold in the coherence estimates
in the frequency range of 0−20 Hz. With 10 non-overlapped
windows, the peak coherence value at 4.8 Hz was 0.74,
where the detection probability was 0.98 and the lower
bound of the 90% confidence interval [0.47, 0.85] was be-
yond the independence threshold 0.28. However, at 9.4 Hz
the peak coherence value was 0.50, the detection probability
was below 0.95 and the lower bound of the 90% confidence
interval was below the independence threshold. In compar-
ison with the estimation with 75 non-overlapped windows,
the peak coherence value at 4.7 Hz was 0.26, but the de-
tection probability was close 1.0 and the lower bounds of
the 90% confidence interval 0.15 and 0.12 were well above
the independence threshold 0.04 at 4.7 and 9.5 Hz. Further-
more, the phase values were more stable in estimation with
75 windows than that with 10 windows.

6. Discussion

In the present report, we have attempted to enhance the
efficiency of the coherence estimation. We proposed the
guidance for validating the reliability of the significant
coherence estimates based on their normalized bias error
and random error. Two more statistical tests based on the
exact confidence interval and the detection probability are
proposed for testing significance of coherence estimates.

We evaluate the estimator performance by calculating
the errors of the estimates because the estimates of MSC
are random variables. The performance of an estimator is
usefully characterised by the random error and bias error,
thus the performance can be improved by minimizing the
random error and bias error. In the most commonly em-
ployed weighted overlapped-segment averaging coherence
estimator, two signals with overall lengthP can be divided
into a number of segments in certain length (T). nd means
the segments are disjointed or zero-overlap between seg-
ments; whereasno implies data segments are overlapped
over certain length (L). Coherence is estimated by averag-
ing the cross-spectra normalized with auto-spectra fromno
signal segments. The performance of an estimator is influ-
enced mainly by three parameters: (1) segment lengthT, (2)
number of the data segmentsnd, and (3) overlap fractionL.

The segment lengthT should be large enough to cover the
entire cycle of the dominant component in the signals and

to avoid the bias error from the bulk time delay between the
signals. In addition, the frequency resolution of coherence
estimation based on the Fourier transform is inversely pro-
portional to the segment lengthT, thus T should be large
enough to provide adequate spectral resolution for differen-
tiating components of the signals. Besides the bias from the
limited signal length, there is another type of bias due to
rapidly changing phase (Carter, 1987). If the phase angle of
the cross-power spectrum varies rapidly as a function of fre-
quency, the estimated coherence can be biased. The down-
ward bias approximately equals to(|D|2/T 2 − 2|D|/T)γ2

xy

or −(2|D|/T)γ2
xy while |D| is much smaller than the length

of each data segmentT. Here,D is the group delay com-
puted as the slope of the phase and its unit is seconds. To
practically reduce this type of bias, one can set a larger size
for each data segment or realign the two signals to compen-
sate for the time delay between them. When the phase is
relatively stable over the frequency range of interest, for in-
stance at 4.8 and 9.7 Hz inFig. 5(c), the bias due to rapidly
changing phase is negligible.

In the case of zero-overlap, given the overall length of the
signalsP, the number of data segmentsnd is inversely re-
lated to the segment lengthT. From (3) and (4)nd is shown
as an influential parameter of the probability distribution of
the estimates and thus affects its bias and variance. There-
fore, an adequate number of disjoint data segments must be
selected based on an acceptable level of bias and random
errors. We have proposed a practical guide for selecting
a reliable value ofnd based on the normalized bias error
and random error of estimation with a certain MSC value.
In practice, the maximum acceptable normalized bias error
was thought as 0.1 and less than 0.05 will be ideal (Bendat
and Piersol, 1993). For an estimated coherence value with
annd, one can validate the estimation based on the normal-
ized bias error curves (Fig. 1(a)). If the cross-point of the
coherence value andnd value falls into the shadowed area,
the bias error is larger than 0.1, suggesting a larger number
of segments is needed for smaller coherence values. Simi-
larly, the random error is larger than the maximal acceptable
value of 0.2 (Bendat and Piersol, 1993) if the cross-point
of the coherence value andnd value falls into the shadowed
area inFig. 1(b). Estimator performance will be improved
as increase in valuend and decrease in bias and random er-
rors. For the same value ofnd, on the other hand, the higher
value of the true MSC is, the less bias and random errors.

The performance of the estimator can also be improved
by the overlapped-segment averaging which makes more ef-
ficient use of the data when forming the MSC estimate. The
bias and random errors could be reduced further by over-
lapping the data although at the increased computational
costs. Twenty-five to fifty percent overlap is quite reason-
able in practice (Carter, 1987; Kay, 1987). However, while
the overlap increases from 60 to 90%, the bias and vari-
ance decrease slightly but the computation load increases
dramatically.
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Fig. 5. Coherence estimation between STN PFs and EMGs during tremor.
(a) The rectified flexor EMGs and STN LFPs. Coherence estimation (thick
solid line) between EMGs and LFPs with non-overlap windows of 15 s (b)
and 2 s, superimposed with three different statistic tests. Dotted line: The
probability of detection; grey area: the exact confidence interval of 90%;
upper horizontal line: 95% probability of detection; and lower horizontal
line: the independence threshold.

When the coherence estimation is used to measure the
association and linearity between two stationary stochastic
processes, it is necessary to specify an interval with certain
confidence that the true coherence falls in. Some types of
approximate confidence intervals were given in previous
works (Bendat and Piersol, 1993, 2000; Brillinger, 1975;
Scannell and Carter, 1978). The approximate confidence
intervals are reliable under the assumption that the random
error is small and data are sufficient (Bendat and Piersol,
1993, 2000). But in many circumstances the signals, espe-
cially biomedical signals, are stationary only in short dura-
tion, and the coherence is usually weak. Hence knowing the
exact confidence interval is highly desirable. Furthermore,
the exact confidence interval can also be used to determine
the significance of the coherence estimation.

The independence threshold has been widely used for
testing the statistical significance of the coherence estimates.
Coherence estimates below this threshold suggest that the
two processes are independent (Brillinger, 1975; Carter,
1987; Halliday et al., 1995; Zaveri et al., 1999). However,
people are generally more interested in coherence estimates
above this threshold. For a coherence value much higher
than the threshold of independence, the two signals are
highly unlikely to be independent. Thus, it is reasonable to
assume that two signals are correlated. However, it does not
directly prove the existence of correlation. Therefore, when
the coherence values are above but close to the threshold,
due to weak correlation or inefficient estimation, e.g. due
to limited number of windows, the statistical significance
in coherence estimates will be in doubt. To overcome this
problem, two supplementary statistical tests are proposed
to test the significance of the coherence estimates. One is
the probability of detection, i.e. while a thresholdEI is used
to test the hypothesis that MSC equals 0 with a probability
of PI , the estimates of coherence above this threshold can
be seen as the evidence of linear association between two
processes at certain probabilityPD (Carter, 1987). If PD is
larger than a significant probability, such as 0.95, there is
true correlation between two processes. When the estimates
of coherence are above the independence threshold, but
their probabilities of detection do not reach the significance
level, it suggests that the two signals are not statistically
independent, but the significant linear association between
them is not sufficiently confirmed. It is also noticed that
when the estimated coherence is actually very small, and
close to the independence threshold, the difference between
the true and estimated probability of detection increases.
In this case, it is necessary to adjust the parameter of the
probability of detection. If the coherence value is larger
than the independence threshold and the true probability
of detection is larger than 0.95, the difference between
the true and estimated probability of detection is approxi-
mately constant and irrelevant to the coherence value and
the number of data segments (Table 1). We would recom-
mend 0.97 as a more reliable significant level than 0.95
for the estimated probability of detection particularly when
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the coherence value is small and close to the independent
threshold.

In order to measure the significance of the coherence
estimates, another statistical test based on the exact confi-
dence interval of the coherence estimates is proposed. The
hypothesis (H0) is: MSC > 0 againstH1: MSC = 0 at a
frequency is tested by the comparison of the confidence
intervals. If the lower bound of the one side confidence
interval with confidence coefficient 0.95 is larger than the
independence thresholdEI , H0 is accepted withα < 0.05
and the MSC is significantly larger than 0. By increasing
values ofnd steeper probability of detection curves and nar-
row confidence band are obtained. The statistical tests are
more powerful to detect the significance of the estimates.

To investigate the functional correlation between the
symptom-related EMGs and brain FPs presents a very good
case for using coherence estimation. However, given the
features of the symptom-related FPs, the coherence estima-
tion needs to be optimised and extra statistical tests may
be necessary. In the case presented in the current report,
increasing the value ofnd from 10 to 75 results in a clear
change in the value and frequency resolution of the MSC
estimates with narrower confidence interval and higher de-
tection probability at the tremor frequency. The significant
coherence is also detected at the double tremor frequency
with 75 windows but not with 10 windows (Fig. 5). The
significant coherence is concealed due to the larger bias
error and random error caused by the fewer windows.

One important issue which needs to be addressed here
is the influence of stationarity or non-stationarity of the
signals on the coherence estimation. Generally speaking the
MSC estimator is most suitable for analysing the time-series
which have a zero-mean and wide-sense stationarity with
a constant variance over time. The trend of the time-series
will cause over-rejection of the null hypotheses in regres-
sions of one signal on another, leading to false positive
relationships (Yaffee and McGee, 2000). Also if the vari-
ance of the data segments are not stable, the estimated
coherence will be dominated by the subset of segments
with the largest variance. The statistical tests on the coher-
ence estimates may then be misinterpreted. The stationarity
of signals may be evaluated using the run or side tests for
the sequence of mean values and standard deviations from
the data segments (Kittel, 1977; Manuca and Savit, 1996;
Sugimoto et al., 1977). One method to exclude the influ-
ence of the non-stationarity was suggested by removing
the mean value and normalising standard deviation across
the data segments in pooled coherence estimation (Baker,
2000; Halliday et al., 1999).

Stationarity of the neural signals usually relates to the
state or specific physiological/pathological condition over
which the signal is recorded. Most of the neural signals ex-
hibit non-stationary activity to some extent. In practice, the
influence of non-stationarity on coherence estimation may
be limited by controlling the recording condition and select-
ing the data segments over which the signal is stationary.

In practice, there is always a trade-off between the bias and
random error of the estimator induced by a limited number
of data segments and the influence of non-stationarity with
a large number of segments. This trade-off is easier to deter-
mine when the coherence estimates are large in comparison
to when they are small. Undoubtedly further work is needed
to find indices for determining the optimal data length based
on stationarity of the signals. In the present report, we esti-
mated coherence between the tremor-related LFPs and EMG
over a length of 150 s to illustrate the influence of the seg-
ment number on efficacy of an estimator and accuracy of the
statistical tests. The signals were recorded while the patient
was fully resting and the tremor activity was persistent with-
out obvious intermittency. The LFP signal was stationary
with constant mean and variance, while the rectified EMG
showed a smooth decline in the standard deviations over seg-
ments, but no sudden changes. Given the facts that the coher-
ence estimates at frequencies of 4.8 and 9.7 Hz were much
higher than the independence threshold and satisfied all three
statistical tests, we concluded that the LFPs and EMGs were
significantly coherent at the tremor and the double-tremor
frequencies.

In summary, we have proposed practical algorithms for
optimising a coherence estimator and generating supplemen-
tary statistical tests, and demonstrated the utility of the above
measures in assessing the functional correlation between the
tremor-related oscillatory STN FPs and the surface EMG of
the contralateral forearm extensor in Parkinsonian patients.
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