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Abstract Coordination between the eyes and the hand is
likely to be based on a process of motor learning, so that
the interactions between the two systems can be accu-
rately controlled. By using an unusual tracking task we
measured the change in brain activation levels, as re-
corded with 3T functional magnetic resonance imaging
(fMRI), between naı̈ve human subjects and the same
subjects after a period of extended training. Initially the
performance of the two groups was similar. One subject
group was then trained in a synchronous, coordinated,
eye–hand task; the other group trained with a 304 ms
temporal offset between hand and eye tracking move-
ments. After training, different patterns of performance
were observed for the groups, and different functional
activation profiles. Significant change in the relationship
between functional activation levels and eye–hand task
conditions was predominantly restricted to visuo-motor
areas of the lateral and vermal cerebellum. In an addi-
tional test with one of the subject groups, we show that
there was increased cerebellar activation after learning,
irrespective of change in performance error. These re-
sults suggest that two factors contribute to the measured
blood oxygen level-dependent (BOLD) signal. One de-
clined with training and may be directly related to per-
formance error. The other increased after training, in the
test conditions nearest to the training condition, and
may therefore be related to acquisition of experience in
the task. The loci of activity changes suggest that im-
proved performance is because of selective modified
processing of ocular and manual control signals within
the cerebellum. These results support the suggestion that

coordination between eye and hand movement is based
on an internal model acquired by the cerebellum that
provides predictive signals linking the control of the two
effectors.
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imaging Æ Cerebellum Æ Motor learning

Introduction

Many imaging groups have reported changes in func-
tional activation of sensory-motor systems in the hu-
man brain that are contingent on motor learning or
adaptation. A critical region in most of these studies is
the cerebellum (Jenkins et al. 1994; Shadmehr and
Holcomb 1997; Jueptner et al. 1997a, b; Tamada et al.
1999; Imamizu et al. 2000; Ramnani et al. 2000;
Nezafat et al. 2001; Ramnani and Passingham 2001;
Seidler et al. 2002; Imamizu et al. 2003), well recogni-
sed as important for motor learning (Thach et al. 1992;
Ito 2002). Two patterns of change in activation are
prominent. First, there is initial strong signal during
early learning that decays as performance improves
(Jueptner et al. 1997a; Imamizu et al. 2000; Nezafat
et al. 2001). This is likely to be related to neural pro-
cessing of motor errors: directly related to cerebellar
signalling of error; to neuronal adaptation driven by
the error; or to the increased motor output as subjects
correct mistakes or co-contract to increase limb stiff-
ness. Second, there is evidence for increased cerebellar
activation which develops as learning proceeds, sug-
gested to be a signature of an internal model or motor
memory (Shadmehr and Holcomb 1997; Imamizu et al.
2000; Imamizu et al. 2003).

Functional activation of the cerebellum is, however,
always combined with activity in other cerebral sensory-
motor regions. Changes in activity caused by learning
are, moreover, found both in cerebral and cerebellar
regions. Because of this, when combined with the fact
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that the cerebellum is sensitive to many different char-
acteristics of task performance (e.g. speed, rate of
movement, force, extent, timing, and accuracy), we
cannot predict what components of the cerebellar re-
sponses are modified, nor whether changes in cerebellar
function cause—or are caused by—activation changes in
cerebral areas. Last, the areas in the cerebellum in which
significant activation differences are observed during
learning are not always straightforwardly mapped on to
areas that are activated during the relevant hand or arm
actions (e.g. Nezafat et al. 2001; Seidler et al. 2002;
Imamizu et al. 2003).

We recently reported (Miall et al. 2001) that in a
visually guided tracking task, the cerebellar blood oxy-
gen level-dependent (BOLD) signal measured with
functional magnetic resonance imaging (fMRI) was re-
lated to the temporal relationship between eye and hand
movements. In fact, the quadratic relationship between
eye–hand asynchrony and BOLD signal was found to be
significant only in the cerebellum, even though perfor-
mance of the task strongly activated the whole cerebro-
cerebellar circuit responsible for visually guided action.
This task, manipulating the temporal relationships be-
tween eye and hand, might therefore provide a powerful
tool to explore learning-dependent changes isolated to
the cerebellum alone.

We report here three new experiments to test the
relationship between tracking performance and BOLD
signal in the cerebellum. Two groups were scanned
before and after learning a specific eye–hand coordi-
nation condition. We first tested if learning-dependent
changes in tracking performance are coupled with
specific changes in the pattern of activity within the
cerebellum or elsewhere. Second, we tested the predic-
tive relationship between measures of performance and
coordination and the BOLD signal. Third, we mea-
sured activity under constant performance conditions,
to dissociate the hypothesized increase in cerebellar
activation caused by learning from the decrease caused
by reduction in error.

Methods

Subjects

Twenty-three subjects participated in these experiments
after giving written informed consent, in accordance
with Declaration of Helsinki. The Oxfordshire Clinical
Research Ethics Committee approved the experiments.
One subject failed to perform the tracking tasks ade-
quately and is not considered further. One group (group
A, n=10: four male, six female; age range 19–21 years)
was tested in experiment 1 only. Group B (n=12: nine
male, three female; age range 18–34, mean 23.3 years)
were tested in experiment 2; and nine subjects from this
group were also tested in experiment 3 (six male, three
female, mean age 24.2).

Tracking and training paradigms

The details of the task have been published previously
(Miall et al. 2001). In brief, subjects were required to
perform ocular tracking of a visual target at the same
time as performing manual compensatory tracking using
a hand-held joystick. They used 90-degree prismatic

Fig. 1 Tracking task. A. Subjects viewed a display screen with a
stationary cross-hair and two moving symbols (circle and square).
The circle was the target for eye movement, and followed a smooth
unpredictable trajectory (shown here, black dots, but not displayed
on screen). The square was controlled by a hand-held joystick, and
its distance from the cross-hairs reflected the error between desired
and actual joystick positions. By compensating for the cursor’s
imposed displacement away from the centre following a similar
target trajectory as for the eyes, subjects maintained the square
cursor close to the cross hairs (blue trajectory, also not displayed
on screen). B. Typical ocular and manual performance measured
outside the fMRI scanner. The horizontal components of the target
(black), eye (red) and joystick (blue) trajectories are plotted against
time. The vertical axis is the horizontal screen coordinate (in
pixels). In this condition, eye and hand target functions were
identical and synchronous, and both eye and hand accurately
follow the same spatial path. C. An example of the �304 ms offset
condition in which the manual target (brown) anticipated the ocular
target (black) by 304 ms. The joystick trajectory (blue) also
precedes the ocular trajectory (red). The inset is a magnified
segment
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glasses to view a computer-generated display (Fig. 1A),
projected on to a viewing screen at 640·480 resolution,
with 70 Hz refresh rate. If necessary, subjects’ vision
while in the scanner was corrected with self-selected
lenses. They held a lightweight joystick in their right
hand and movement of the joystick in two dimensions
was sampled at 26 Hz.

The tracking task for all experiments required ocular
and manual responses. The target for eye movements
was a white circle, 0.2� in diameter, moving in a smooth
pseudo-random trajectory in two dimensions. The target
position for the joystick-controlled cursor was given by a
large centrally positioned stationary cross-hair
(Fig. 1A), but the cursor was continually moving, fol-
lowing another pseudorandom trajectory, thus requiring
so-called ‘‘compensatory’’ tracking responses with the
joystick to bring the cursor back on to the stationary
cross-hair. Movement of the tip of the joystick of
approximately 6 cm (75� of joystick motion) was re-
quired, typically involving thumb, finger, and wrist
movements. The target functions controlling the eye
target and the cursor motion away from the cross-hair
were randomised each trial (Miall et al. 2001). In the null
or baseline condition (s=0 ms) these were identical,
inverted, versions of each other. Thus during ocular
pursuit and accurate manual compensatory tracking, the
subject’s eye and hand would actually follow trajectories
that were synchronous and consistent—as the eyes
moved leftwards, for example, so should the hand, to
compensate for the rightwards motion of the cursor
away from the centre (Fig. 1B).

Temporal offsets between the eye and hand target
functions were then introduced to parametrically vary
the amount of eye–hand coordination across five test
conditions (s=�304, �152, 0, +152, and +304 ms).
Positive offsets (s=+152 or +304 ms) indicate the
ocular target preceded the hand target; negative offsets
(s=�152 or �304 ms) indicate the ocular target lagged
behind the hand target (Fig. 1C). Hence, during accu-
rate tracking, the eye and hand followed the same spatial
path in respect of the display screen, but with a short
time offset between the two trajectories. Experiments 1
and 3 also included an ‘‘independent’’ condition in
which the target trajectories were spatially and tempo-
rally unrelated to each other (Miall et al. 2001).

Eye movement could not be recorded in the MR
environment but was observed in all subjects during
training in the laboratory. Eye movements were also
recorded in other subjects, using an ASL 501 infrared
eye tracker (see ‘‘Results’’). Accurate ocular tracking
required eye movement of up to 10� horizontally, 7.5�
vertically, with maximum speeds of approximately 6 s�1.
Manual tracking was quantified by calculating the RMS
error between the cursor and the central cross hairs,
measured in screen pixels (1 pixel�0.016 degrees at the
eye). Because the target trajectories were randomised
each 18 s trial, and thus had slightly different average
speeds, RMS error varied from trial to trial. Hence
the RMS errors were normalized by division of the

mean RMS error per trial by mean target speed per
trial (Miall et al. 2001) and are presented in arbitrary
units.

All subjects were scanned with fMRI in two sessions
7 days apart, before and after a period of extended
training that took place outside the MR scanner. One
or two days before the first scanning session, all sub-
jects were given limited training in the laboratory. This
introduced them to the task, confirmed that they per-
formed according to instruction, including maintaining
their gaze on the ocular target as assessed by the
observing experimenter, and provided approximately
3 min practice at the coordinated and independent
conditions. This was followed by 12 min practice (40
trials) at the coordinated and s=±152 ms temporal
offset conditions (10 trials each plus rest, in pseudo-
random order). A further 5–10 min practice of these
last three conditions was provided in the scanner, while
setting up for functional imaging. To keep subjects as
naı̈ve as possible we restricted practice to these three
conditions, avoiding exposure to the more obvious and
extreme conditions of ±304 ms that were used in the
experiments. Results show that learning in this task is
slow, and we do not believe the limited practice of
these conditions would have a major effect on perfor-
mance.

After the first scanning session, subjects trained in
the laboratory for 1 h a day for 4 days, lying in a
supine position approximating their position in the
scanner. Training consisted of three 20 min sessions
each day, with a few minutes rest between sessions. No
training was undertaken over the weekend; no per-
formance differences were seen that related to the
scheduling of practice and scanning sessions (Monday
scans (with training on Tuesday–Friday) n=8; Thurs-
days scans (training on Friday and Monday–Wednes-
day) n=6; Friday scans (training on Monday–
Thursday), n=9).

Imaging

T2*-weighted echo-planar images were acquired for
each subject using a 3T Siemens Vision scanner with a
GEM BEST sequence. The field of view covered the
whole brain: 256·256·125 mm, 64·64 voxels, 25 axial
slices; TR=3 s, TE=30 ms, flip angle=90�. For
experiment 1, 427 volumes were acquired (total 21 min
21 s); 294 volumes were acquired for experiment 2
(14 min 24 s); and 216 volumes for experiment 3 (10 min
48 s). High-resolution T1-weighted structural images
were also acquired for each subject.

Image analysis

General analysis procedures are described first (Smith
2001). Specifics for each experiment are given below. All
analysis was carried out using FMRI Expert Analysis

172



Tool (FEAT) Version 5.00, part of FSL (‘‘FMRIB’s
Software Library’’; a full description of the functions
and processes used in fMRI analysis are available at
http://www.fmrib.ox.ac.uk/fsl). In brief, the times series
data were motion-corrected and spatially and tempo-
rally smoothed (FWHM 5 mm; high pass cut-off 162 s).
Statistical analysis was then performed using general
linear modelling with FILM (‘‘FMRIB¢s Improved
Linear Model’’) with local autocorrelation correction
(Friston et al. 1994; Woolrich et al. 2001). All statistical
parametric maps were combined across subjects with
least squares mixed effects models (also called random
effects analyses). Z-score statistical images (Gaussian T-
statistics) were thresholded using clusters determined by
Z>2.3 and a corrected cluster significance threshold of
P=0.01 (Worsley et al. 1992; Friston et al. 1994; For-
man et al. 1995). Registration of the functional activa-
tion maps to high resolution and standard structural
images was carried out using FLIRT (‘‘FMRIB¢s Linear
Image Registration Tool’’) (Jenkinson and Smith 2001;
Jenkinson et al. 2002), using an affine 12 degrees of
freedom transformation.

Significant activation clusters were rendered as
colour images on to the median brain image of the
group. Locations of cluster maxima and local maxima
are reported; identification of maxima was examined
in the median images by reference to published atlases
(Talairach and Tournoux 1988; Schmahmann et al.
1999; Duvernoy 1999). Parameter estimates (PEs) from
the general linear model for each subject were ex-
tracted from the data using Featquery, extracting the
within-subject mean values across those voxels identi-
fied as regions of significant activation in the mixed
effect analyses. Group statistics on these estimates
were performed with SPSS (SPSS, Chicago, Illinois,
USA).

Specific experimental details

We report three experiments. Subject group A per-
formed experiment 1. Group B performed experiment 2,
nine subjects tested in group B were also tested in
experiment 3. The scanning for experiment 3 took place
immediately after the scans for experiment 2, both be-
fore and after training.

Experiment 1: training with eye–hand offsets

Ten subjects (group A) performed six tracking condi-
tions, presented 10 times each in blocks of 18 s. These
were the five temporal offset conditions described above,
and the independent eye–hand tracking condition (see
‘‘Tracking and training paradigms’’, above, and Miall
et al. (2001); Miall and Reckess (2002)). A rest or fixa-
tion condition was presented every seventh block, when
the circular and square icons turned red and remained
stationary; the other six active tracking conditions were

pseudorandomly ordered. Between the two scan ses-
sions, subjects in group A were trained exclusively at the
s=�304 ms condition (with the ocular target lagging
behind the hand target).

The general linear models used to analyse experiment
1 consisted of six categorical variables defining the six
active tracking conditions as explanatory variables
(EVs). Temporal derivatives of these variables were also
included as covariates to enable temporal adjustment of
the EV fits to the data. Because randomisation of the
target motion every 18 s trial introduced speed varia-
tions between trials, which would affect activation levels
(Turner et al. 1998; Imamizu et al. 2000; Miall et al.
2001), the average speed of the joystick measured every
3 s, and its temporal derivative, were also used as co-
variates. All the above 14 covariates were convolved
with a gamma function (SD 3 s, mean lag 6 s) to model
the haemodynamic responses. In addition, six head
motion correction parameters (x, y, z and rotations)
were included as covariates, but without convolution by
the gamma function, to model the direct position-
dependent effects of head-motion on the recorded signal.
Thus a total of 20 EVs were used in the multiple
regression of the BOLD signal, producing an array of
PEs, or weights, of which only the six are of interest.
Voxels with PEs significantly greater than zero define
regions where activation is greater than during the rest
condition.

Regions of activation parametrically related to the
temporal offset between the two target functions were
then identified using a vector of six non-linear contrast
weights (CW) of (+5, �5, +1, +3, +1, and �5),
weighting the independent condition and temporal off-
sets of s=�304, �152, 0, +152, and +304 ms,
respectively. This model tests for activation quadrati-
cally related to the temporal offsets, combined with high
activation during independent tracking as predicted by
our earlier work (Miall et al. 2001). Thus the contrast
identified voxels for which the dot product was signifi-
cantly greater than zero.

CW � PE > 0:0 ð1Þ

Comparisons of the main contrasts (the estimates of PE
for the six tracking conditions) between sessions 1 and 2
and the contrast of the parametrically related activation
between sessions (Eq. 3) were tested with paired t-tests
using mixed effects analyses, which are also known as
random effects analyses.

Experiment 2: training with coordinated
eye–hand action

A separate group of 12 subjects (group B) performed five
tracking conditions, presented eight times each in blocks
of 18 s. A rest or fixation condition was presented every
sixth block. The five active conditions were pseudoran-
domly ordered and consisted of the five temporal offset
conditions (see ‘‘Tracking paradigm’’, above). Between
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the two scan sessions, this subject group was trained at
the null, or coordinated (s=0 ms) condition.

The GLM analysis was basically identical to that
used in experiment 1, except that 18 instead of 20 EVs
were used, because there was one fewer tracking condi-
tion and one fewer temporal derivative. Regions of
activation quadratically related to the temporal offset
between the two target functions were identified using
five non-linear contrast weights of CW=(�4, +2, + 4,
+2, and �4). These weights differ from those for
experiment 1 only because in the first experiment an
extra first parameter was needed to code for the inde-
pendent condition and then, to maintain a mean of zero,
all weights were offset by �1. However, they test the
same relative difference across the five temporal offset
conditions. Comparisons between sessions were made in
the same way as in experiment 1.

Experiment 3: constant error tracking

These scanning conditions immediately followed
experiment 2 (before and after training), and were
completed by nine of the 12 subjects from group B.
Three conditions were presented 10 times each, in blocks

of 18 s. Every seventh block was rest (fixation), the other
three conditions were presented in pseudorandom order,
twice in each set of six blocks. These were the coordi-
nated (s=0 ms), the asynchronous (s=�304 ms), and
the independent eye–hand conditions (Experiment 1).
However, an ‘‘error-clamping’’ algorithm was used in
which subject performance was measured trial-by-trial,
and the mean target speed for each 18 s trial was ad-
justed by the ratio of RMS tracking error recorded in
the previous trial of the same condition versus a con-
stant target performance level of 7.0 (arbitrary units;
Fig. 3). This was designed to maintain constant levels of
performance (RMS error) across tracking conditions
and across pre-learning and post-learning sessions. For
analysis, the first trial of each condition was discarded.
The error clamping procedure failed to hold errors at the
target level during the independent tracking condition
(mean RMS error 10% higher than target; SD of within-
subject RMS errors 62% greater than for the other two
conditions). This condition was therefore discarded
from all further analysis.

For experiment 3, comparisons between the main
contrasts of sessions 1 and 2 (the two tracking condi-
tions with respect to rest, the movement speed covariate,
and the combined contrast for tracking-related activa-
tion) were made in the same way as in experiment 1.
Because of the small group size (n=9), these statistical
maps were spatially restricted to the cerebellum before
thresholding for significant clusters, using a mask based

Fig. 2 Tracking performance, group A, experiment 1. Mean RMS
tracking errors (bars, ±1 SEM, n=10) were measured from the
joystick position signal recorded throughout each scanning session,
normalized for the mean target speed (see ‘‘Methods’’). This group
was tested in five eye–hand temporal offset conditions and in an
independent eye–hand condition, and trained at the s=�304 ms
asynchronous condition between sessions 1 and 2. Optimum eye–
hand asynchrony was estimated for each session from quadratic
regression across the five temporal offset conditions

Fig. 3 Tracking performance, group B, experiments 2 and 3. This
group was tested in five eye–hand temporal offset conditions, and
trained at the coordinated, synchronous, condition. A. Mean RMS
tracking errors from experiment 2 (±1 SEM, n=12) are presented
in the same format as for Fig. 2. B. Mean RMS tracking errors
from experiment 3 (±1 SEM, n=9), during on-line clamping of
RMS error by changing target speed
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on the median structural image. This restricted the
number of voxels tested in the analysis, so increasing
statistical power.

BOLD regression analysis

A multiple regression equation was used to estimate the
predicted BOLD signal level, B, by fitting the group
mean BOLD values calculated over cerebellar regions of
interest (i.e. the areas of significant difference in Fig-
s. 6A, B). The regression equation was:

BG;S;s ¼ a EG;S;s þ bS C2
s�kG;S

þ cS ð2Þ

where S is scanning session (1 or 2), G is subject group
(A or B), s is the temporal offset for a given condition.
The term kG,S is the optimum temporal offset for that
group and session; this is the estimated point at which
the performance versus temporal offset curve reaches a
minimum (Figs. 2 and 3A). The error term (EG,S,s) was
the mean performance error for a given group, in a
specific session and offset condition; the ‘‘coordination’’
term (C2

s-kG,S) was the square of the temporal difference
between the optimum offset (kG,S) and the current offset
condition, s.

The regression equation has five free parameters to be
fitted. A single coefficient, a, was used to scale the error
term across all conditions and across both groups. Two
separate coefficients bS=1 and 2 were used to scale the
coordination term for the two sessions; the change in bS

between scanning sessions reflects learning. For the data
from the independent condition in experiment 1, we
forced these coordination weights bS to zero. However
the weights bS were fixed across all of the time-offset
conditions and across both groups within either session.
We also allowed different pre-learning and post-learning
constant terms for the two sessions (cS=1,2) to reflect all
other non-specific changes in BOLD activation between
sessions.

Thus, we attempted to fit the mean BOLD signal
measured under each experimental condition and in
each session by a regression equation based on the
measured tracking performance as one regressor (the
error term, E, weighted by the single coefficient a) and
on the quadratic coordination term C2 as a second
regressor. The latter considers the difference between the
current tracking condition and the optimum tracking
condition for that subject group, and has a different
coefficient from sessions 1 to 2, reflecting learning-re-
lated changes in functional activation.

Results

Tracking performance

When first tested in the scanner, both groups of subjects
showed the expected quadratic pattern of tracking errors

across the five eye–hand temporal offset conditions
(experiments 1 and 2, black bars, Figs. 2 and 3A), with
better performance in low-asynchrony conditions and
higher errors in the higher asynchrony conditions (Miall
et al. 2001; Miall and Reckess 2002). In addition, errors
were highest in the difficult, independent eye–hand
condition, which was tested in group A only (black bars,
Fig. 2). There was no significant difference between the
tracking errors for the two subject groups in this initial
session, tested with a 2·5 (group by condition) repeated
measures ANOVA (rmANOVA) (F(1,20)=2.95, P=0.1).
Nor was there an interaction between conditions and
group (F(1.87,37.38)=1.174, P=0.32, with Greenhouse–
Geisser-adjusted d.f).

By fitting quadratic regression curves to the five
temporal offset data values, the point of optimum per-
formance was estimated to be when the ocular target led
the manual target by k1=95 ms (group A) or 83 ms
(group B), close to previous values (Miall et al. 2001;
Miall and Reckess 2002). The fit of the quadratic curves
was high (r2>r2>0.93, group A: F(1,9)=6.96, P=0.027;
group B: F(1,11)=16.6, P=0.002). Thus both the error
scores and the point of best performance for the two
subject groups were initially comparable.

During training, tracking errors declined progressively
over the first 3 days for both groups (Fig. 4). Performance
was stable on the fourth, final day of training. Note that
the errors in group A are higher than in group B, because
the task in which they trained was more difficult, but the
learning curves are otherwise similar.

When the two groups were retested after extensive
training, there was both an overall reduction in error
and a group-dependent shift in the point of best per-
formance (grey bars, Figs. 2 and 3A). A 2·5·2 (group
by condition by session) rmANOVA showed there was a

Fig. 4 Learning curves for groups A and B, across 4 days of
tracking practice outside the MR scanner. Mean RMS errors have
been calculated per subject for blocks of ten trials, and averaged
(±1 SEM) across subjects. These curves show the slow decline in
error as subjects trained in the task for 1 h per day; performance on
the final day seems constant
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significant effect of session and condition, as expected
but also, critically, there was a significant interaction
between group, session, and condition (F(4,80)=2.905,
P=0.027). Thus the two groups performed differently
across the five conditions, after training in their specific
condition.

Importantly, the estimated optimum eye–hand asyn-
chrony point for the two groups shifted in opposite
directions upon training. For group A, with subjects
trained in the s=�304 ms condition, it moved from
k1=95 ms to k2 �77 ms, i.e. from eye–hand anticipation
to hand–eye anticipation. For group B, with subjects
trained at the synchronous condition (s=0 ms), it
moved from k1=83 ms to k2=156 ms, i.e. toward even
greater eye–hand anticipation. Again the fit of the qua-
dratic curves was good (r2>0.96 group A: F(1,9)=21.25,
P=0.001; group B: F(1,11)=5.42, P=0.04).

It is worth mentioning that part of the overall, non-
specific, reduction in error from sessions 1 to 2, seen in
both groups, is probably because of repeated experience
of the unusual conditions of the MR magnet. For con-
trol groups tested in the laboratory under otherwise
similar training conditions smaller mean errors were
observed in session 1, and a smaller mean drop in error
after training (unpublished work).

Although we did not record eye movements for either
subject group, eye movements were recorded outside the
scanner using an ASL501 infrared eye tracking system in
a separate group of 13 subjects performing the same task
used here (five temporal offsets of ±304, ±152, and
0 ms), after training for approximately 30 min. For this
group, the median time that the eye was more than 1.5�
away from the ocular target was 2.14% of the total. This
figure includes all ocular tracking errors, occasional and
brief fixations of the cursor, and any apparent error due
to drift of the eyetracker calibration; blinks added a
further 0.5%. The mean correlation between eye posi-
tion and target position was r2=0.89 (±0.016 SEM); the
mean lag of the eye behind the ocular target was 28 ms

(±7.8 SEM). Thus we expect that the subjects reported
in this paper showed similar accurate and persistent
ocular tracking, without significant periods spent fixat-
ing the manual cursor or the crosshairs.

For nine subjects from group B who were also tested
under experiment 3, the on-line clamping algorithm that
adjusted target speeds trial-by-trial to maintain constant
RMS error successfully kept mean performance within
5%, both across the two conditions and between ses-
sions 1 and 2 (Fig. 3B). Across all nine subjects, the
standard deviation of errors across blocks was only 12%
of the target level; within-subject difference in mean er-
ror between sessions 1 and 2 was 8% of the target level.
Hence a 2·2 (session·condition) rmANOVA showed no
significant effect of training, of condition, or an inter-
action (F(1,9)<2.17, P>0.1). In this experiment, we
could, therefore, assess the change in functional activa-
tion between the two sessions, free of confounds because
of changes in performance.

Functional activation

Training related differences

As an initial analysis we looked for areas activated in
common across sessions 1 and 2. There was a highly
consistent pattern of activation seen in the comparison
of all tracking conditions versus rest for experiments 1–
3, with activation of the major sensorimotor areas
including strong activation of ipsilateral cerebellum
(only data for experiment 2 are presented: Table 1).
Next, contrasting the common activation seen across all
tracking conditions versus rest between sessions 1 and 2
(pre/post-training) showed no significant increases in
activity as a result of training in either experiment 1 or 2.
There was significantly reduced mean activation across
all conditions in right sensorimotor areas after training
in experiment 1, and in parietal and precuneate areas in

Table 1 Cluster statistics and local maxima for regions showing activation across all five tracking conditions, in sessions 1 and 2

Cluster Volume (cm3) Cluster P Z score X (mm) Y (mm) Z (mm) Location

1 208.9 0 7.05 44 �62 4 R Middle temporal gyrus, MT/V5
– 6.34 �44 �70 2 L Middle occipital gyrus, MT/V5
– 6.61 �32 �22 66 L Precentral gyrus, BA 4
– 6.41 30 �6 60 R Middle frontal gyrus, BA 6

2 40.1 3.21E�17 5.60 2 �70 �26 R CB, Post. Vermis VII
5.24 4 �56 �30 R CB, Post. Vermis VII

– 5.49 28 �46 �36 R CB, Ant. lobule VI simplex
– 5.24 14 �52 �22 R CB, Ant. lobule V culmen
– 5.34 16 �56 �30 R CB, dentate nucleus

3 8.23 3.67E�05 5.20 20 �58 54 R Parietal lobe precuneus, BA 7
– 4.83 16 �62 64 R Superior parietal lobule, BA 7

4 5.4 0.0014 3.85 66 �10 �24 R Inferior temporal gyrus, BA 21
– 3.29 56 �20 �28 R Fusiform gyrus, BA 20

5 4.1 0.00853 3.38 �42 50 �16 L Middle frontal gyrus
– 3.33 �34 22 �26 L Superior temporal gyrus
– 3.10 �40 30 �22 L inferior frontal gyrus

This data are from group B, tested in experiment 2
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experiment 2 (Fig. 5, Table 2). Pair-wise comparison of
each tracking condition before and after training showed
reduced activation of sensorimotor areas in the two most
extreme temporal offset conditions (s=±304 ms), but
the other within-condition and between-session differ-
ences did not reach significance.

In summary, the expected sensory-motor areas of the
cerebrum and cerebellum were strongly activated during
the tracking task, and there was a generalised decrease in
activity in these areas after training, with a greater de-
crease during the more difficult conditions that had large
eye–hand temporal offsets.

Time-offset-related activation differences

We next tested across the whole brain for areas with
differential parametric activation after training. In other

words, we contrasted the slope of the parametric fits
between BOLD signal and tracking condition, before
and after training. This analysis identifies those areas in
which the slope of the quadratic curve relating time-
offset to BOLD signal was higher in session 2 after
training than in session 1, i.e. where:

Fig. 5 Areas of significant decrease in mean BOLD signal after
training: top, experiment 1; bottom, experiment 2. Each panel
shows selected horizontal slices through the regions of reduced
activity, contrasting all active tracking conditions from session 1
against session 2. Table 2 provides details of loci; colour bars
indicated Z scores. Horizontal slices in the top panel are at +52 and
+56 mm above the origin; slices in the bottom panel are at +4 and
+58 mm

Table 2 Cluster statistics and local maxima for areas showing reduced activation across all tracking conditions, from sessions 1 and 2

Cluster Vol. (cm3) Cluster Level P Z score X (mm) Y (mm) Z (mm) Location

EXP 1 Session 1 > session 2
1 11.8 0.00282 4.91 �54 �24 52 L Postcentral gyrus, BA 2

– – 4.65 �42 �38 52 L Inferior parietal lobule, BA 40
– – 3.54 �46 �20 56 L Postcentral gyrus, BA 3

EXP 2 Session 1 > session 2
1 3.1 0.00348 3.74 �12 �84 4 L Cuneus, BA 17

– – 3.29 10 �86 10 R Cuneus, BA 17
2 2.9 0.00497 3.94 6 �56 58 R Precuneus, BA7

– – 3.12 10 �54 70 R Postcentral gyrus, BA 7
– – 3.05 �4 �70 58 L Superior parietal lobule, BA 7

Fig. 6 Areas of significant increase in quadratic regression weights
between tracking condition and the BOLD signal after training. A
experiment 1. B experiment 2. Each panel shows the region of
activity within the cerebellum, contrasting the non-linear regression
model from session 2 against session 1 (Eq. 3). Table 3 provides
details of loci; colour bars indicate Z scores. Horizontal slices in A
are at 8 mm separation from �60 to �20 mm; slices in B are at
8 mm separation from �58 to �18 mm
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CW � PEsession 2 � CW � PEsession 1 > 0:0 ð3Þ

We found areas within cerebellum had significantly in-
creased slope in both experiments (Fig. 6), with local
maxima found in both posterior cerebellar lobules and
vermis (Table 3). Note that by testing for this increased
slope across the tracking conditions we could identify
areas as having a higher slope in session 2 (Table 3),
even though the average level of BOLD signal across all
tracking conditions was lower in session 2 than in ses-
sion 1 (cf. Fig. 5). In experiment 1, a region of left
frontal pole/prefrontal cortex was also identified; in
experiment 2 a small number of voxels in the right
occipital cortex were also significantly different, close to
but not overlapping an area of strong activation seen in
the main tracking conditions (area MT/V5; Table 1; see

bottom right slice in Fig. 6B). No brain areas
showed significant reduction in slope of the regression
model (i.e. Eq. (1)<1.0) after training for either
experiment.

Region-of-interest analysis

To further quantify these activation patterns, we mea-
sured the mean percentage BOLD signal levels for each
task condition in experiment 1 (i.e. the mean values of the
six PEs from the general linear modelling of BOLD sig-
nal), using as region of interest the volume of significant
cerebellar activation shown in Fig. 6A. Within this vol-
ume there was high activation in the first session, in all the
conditions with high tracking errors (independent and

Fig. 7 ROI analysis of BOLD signal levels, experiment 1. A. Mean
GLM PEs (bars, see ‘‘Methods’’) were measured during session 1
from the ROI shown in Fig. 6A (volume: 185±6 voxels) B. Mean
PEs in session 2. C. Within-subject difference in mean PEs (±SEM,
n=10), sessions 2 to 1

Fig. 8 ROI analysis of BOLD signal levels, experiment 2. A. Mean
PEs (bars, see ‘‘Methods’’) were measured during session 1 from the
ROI shown in Fig. 6B (volume: 97±4 voxels). B. Mean PEs in
session 2. C. Within-subject difference in mean PEs (±SEM,
n=12), sessions 2 to 1

Table 3 Cluster statistics and local maxima of areas with increased weighting of the quadratic regression of BOLD signal and temporal
offset condition, for session 2 compared with session 1

Cluster Vol. (cm3) Cluster Level P Z score X (mm) Y (mm) Z (mm) Location

EXP 1 Session2>session1
1 26.9 0.000265 3.90 �22 68 22 L Superior frontal gyrus, BA 10

– – 3.41 �10 70 4 L Superior frontal gyrus, BA 10
– – 3.53 �28 62 26 L Middle frontal gyrus, BA 8
– – 3.47 16 30 60 R Superior frontal gyrus, BA 10

2 24.4 0.000548 3.43 �2 �58 �54 L CB, Post. Vermis Lobule VIII
– – 3.36 40 �52 �54 R CB, Post. lobule VII paramedian
– – 3.29 16 �74 �52 R CB, Post. lobule VIII biventer

EXP 2 Session 2 > session 1
1 15.2 2.38E�07 4.26 -6 �68 �40 L CB, Post. lobule VIII biventer

– 4.00 18 �74 �42 R CB, Post. lobule crus II
– 3.87 10 �60 �46 R CB, Post. lobule VIII paramedian
– 3.84 4 �60 �42 R CB, Post. vermis VIII
– 3.80 14 �70 �44 R CB, Post. lobule VIIB/Crus II

EXP 3 Session 2 > session 1
1 2.9 0.00134 4.11 �4 �76 �40 L CB Posterior vermis VIIA

– – 3.98 �12 �82 �42 L CB Posterior lobule crus II
– – 3.77 �26 �86 �38 L CB Posterior lobule crus I/II
– – 3.17 2 �84 �44 R CB Posterior lobule crus II
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s=±304 ms temporal offset; Fig. 7A). In the second
session, there was overall decline in mean activation
(Fig 7A compared with Fig 7B), combined with devel-
opment of the expected non-linear relationship between
the tracking condition and BOLD signal. Hence, a shal-
low quadratic relationship between BOLD and eye–hand
asynchrony present in session 1 (Fig. 7A) was replaced by
a steeper and inverse quadratic relationship in session 2
(Fig. 7B). The between-sessions change in signal within
this region, measured within-subject, confirmed this,

showing a strong inverse quadratic relationship across the
five temporal offset conditions (Fig. 7C).

A similar pattern of activation was seen across the
five conditions of experiment 2, using the cerebellar
areas identified in Fig. 6B as a region of interest. In the
first session (Fig. 8A) there was again an increased sig-
nal at the s=±304 ms temporal offset conditions, when
tracking errors were elevated (Fig. 3A). After training, a
higher signal was then seen in the coordinated (s=0 ms)
and s=+152 ms conditions (Fig. 8B), when perfor-
mance was best and errors least. The within-subject
difference in BOLD activation from sessions 1 to 2
confirmed this pattern, with clear inverse U-shaped
curve being seen (Fig. 8C).

Fitting quadratic curves to the BOLD signal across
the five temporal asynchrony conditions from the pre-
training session for experiments 1 and 2, we estimated
the inflexion point in the BOLD curve to be at +25 and
�4 ms, respectively (cf. Figs. 7A and 8A). After train-
ing, the inflexion points moved to �122 and +42 ms,
respectively.

Performance-independent activation differences

In experiment 3 we controlled target speeds, to clamp
tracking performance at a constant level between ses-
sions 1 and 2 (Fig. 3B). Despite this constant level of
performance, there was a significant increase in activa-
tion within the cerebellum after training (Fig. 9A).
Measuring mean BOLD signal levels within this volume
of significance showed an increase in activation in both
tracking conditions in session 2 (Fig. 9C compared with
Fig. 9B). The within-subject mean activation differences

Fig. 9 Performance-independent activation changes, experiment 3.
A. The areas within the cerebellum showing a significant increase in
activation during session 2, despite constant performance across
sessions (Fig. 3B). B. Mean PEs (grey bars) measured during
session 1 from an ROI analysis using the
cluster shown in Fig. 9A (volume: 17±1 voxels). Black dots
represent mean PEs (±SEM, n=9) calculated using the coordinate
of maximum significance shown in panel A (XYZ:
+44:�76:�40 mm). White dots show the predicted PEs (see
‘‘Discussion’’). C. Mean PEs, session 2; same format as panel B.
D. Within-subject differences in mean PEs, sessions 2 to 1; same
format as panel B (grey bars). White dots are the mean differences
predicted from Eq. (2). Black dots are the average within-subject
differences (±1 SEM) at the coordinate of maximum significance

Fig. 10 Spatial overlap between areas activated during tracking
and areas with significant change in activation after learning.
Activation clusters for all three experiments (Figs. 6A, B and 9A)
were masked by the area of activation found across all five tracking
conditions, sessions 1 and 2, experiment 2 (Table 1). Regions of
overlap are colour coded by experiment number. Horizontal slices
are at �54, �46, �38 and �30 mm
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measured between sessions 1 and 2 tended towards a
greater increase for the trained, coordinated, condition
than for the s=�304 ms temporal offset condition
(Fig. 9D). The region of significant activation shown in
Fig. 9A is close to but not identical to that seen in
Fig. 6B. We therefore repeated the ROI analysis shown
in Fig. 9D using a region specified by the activation
cluster from Fig. 6B; the results were highly comparable:
differences from the data shown in Fig. 9D were under
5% (difference in % BOLD signal of <0.004%).

Comparison of spatial activation patterns

Figures 6A, B suggest that the areas in the cerebellum
that increased activation patterns after training depend
on the training condition used. Figure 10 shows the
overlap between activation maps for all three experi-
ments (Figs. 6A, B and 9A), masked by the region
activated in common across all tracking conditions
(Table 1). This emphasises that the areas showing a
change in activity upon learning have considerable
spatial overlap with the areas activated by the tracking
task itself. Moreover, two regions showed the strongest
overlap: the paramedian and biventer lobules (VIII) and
the vermis (VII). For group A (experiment 1), the
overlap was mainly in the biventer lobule (Fig. 10, red
and green areas). Remember that this group were
trained in the condition where the manual target pre-
ceded the ocular target, and they shifted their point of
peak performance—i.e. the minimum of the error curves
shown in Fig. 2—from k1=+95 ms (eye leading hand)
to k2=�77 ms (hand leading eye). For group B
(experiment 2), who where trained in the null, coordi-
nated condition, the areas of functional activation
overlap tested in experiments 2 and 3 were largely in the
ocular vermis (Fig. 10, blue areas). This group shifted

their peak performance toward even higher ocular lead
times, from k1=83 ms to k2=156 ms. Finally, there was
also some common activation across the two subject
groups, in the biventer lobule (Fig. 10, green).

Discussion

Manual tracking performance during a dual ocular and
manual tracking task was previously reported to depend
on the degree of temporal coupling between the eye and
hand movements (Miall and Reckess 2002). We show
here that this behaviour is sensitive to training, and that
performance changes differentially with experience of
different eye–hand temporal offsets. We also show that
patterns of cerebellar functional activation which have
been previously reported (Miall et al. 2001) also change
with training, and this change is consistent with the
cerebellum providing experience-dependent coordina-
tion of eye and hand actions.

Estimating cerebellar BOLD signal

We propose that the cerebellar functional activation
observed with fMRI in this task is related to two per-
formance factors. First, there is a contribution directly
related to the level of tracking error (Imamizu et al.
2000; Miall et al. 2001; Nezafat et al. 2001), and this
caused high overall BOLD signal in the first session,
with the highest activation under the most difficult
conditions—the extreme temporal offset conditions
(±304 ms) and the independent condition of experiment
1. This pattern is clearly seen in Fig. 7A. After training,
performance improved across all tracking conditions
and, therefore, this component contributed less to the
BOLD signal in session 2 than in session 1. Thus the

Fig. 11 Regression analysis of the BOLD signal. A. The mean
BOLD signal measured in each condition and session for
experiments 1 and 2 (n=22) plotted against the signal predicted
by the regression model, Eq. (2). B. The BOLD signal predicted
from Eq. (2), after subtraction of the estimated contributions of the
error (a) and constant components (c). The predicted signal during
session 1, across the five temporal offset conditions, was almost
identical for experiments 1 and 2 (dotted lines). In session 2, the
quadratic relationship was inverted, and shifted toward positive
(experiment 2, squares) or negative (experiment 1, diamonds) time-

offsets. The arrows indicate the overall shift for each experiment
from the initial curve. C. The adjusted BOLD signals calculated as
the measured differences in BOLD signal between sessions 2 and 1,
adjusted by the subtraction of the estimated contributions from
change in performance and from the constant components of
Eq. (2). These curves show changes in BOLD signal we would
expect to measure, had we been able to compensate for perfor-
mance differences between sessions, and for non-specific reduction
in activation signal in session 2 (cf. Figs. 7C and 8C)
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average activation across the tracking conditions was
lower, although it was still quite high in the independent
condition in which errors were still high (Fig. 7B). This
pattern replicates the results reported previously (Miall
et al. 2001).

However, the second contributing factor is, we pro-
pose, related to an internal predictive model that
develops as a result of the subjects’ training and expe-
rience at the task and this causes a non-linear, inverse
quadratic relationship between temporal offset condition
and BOLD (Miall et al. 2001). This factor should then
contribute most strongly to the measured BOLD signal
at the tracking condition in which the subjects were
trained, because they will gain most experience in that
condition. It should contribute less at conditions further
from the trained condition. This hypothesis predicts an
inverse quadratic relationship between tracking condi-
tion and BOLD signal, with the maximum BOLD signal
shifted toward the training condition for each subject
group. It also predicts that there should be an increase in
BOLD signal after training even under error-clamped
conditions, as we have found in experiment 3. Last, the
estimated point of best tracking performance, which
moved in opposite directions from sessions 1 to 2 in the
two groups, should be close to the estimated maximum
of the curve fitted to the BOLD signal. This was rea-
sonably well matched: the estimated inflexion point of
the quadratic BOLD curves shifted by �147 ms in group
A and by +46 ms in group B, while their peak perfor-
mance shifted by �172 ms and +74 ms, respectively.

We therefore tested the predictive power of this
relationship between performance and BOLD signal
recorded under all conditions in the four experimental
sessions (n=22, experiments 1 and 2, sessions 1 and 2).
The regression equation (‘‘Methods’’, Eq. 2) used the
group mean tracking error scores for each condition
(EG,S, Figs.2 and 3) as a linear regressor. The quadratic
component (the C2 term in Eq. 2) used the squared
differences between each temporal offset condition (s)
and the point of optimum tracking (kS), the latter also
estimated from the performance curves measured during
each experiment. The weighting coefficient for this
quadratic term, bS, was allowed to vary between pre-
learning and post-learning sessions to reflect the learning
process. Finally we used two constants, cS, for sessions 1
and 2, to account for non-specific changes in BOLD
activation between sessions. Thus all regression predic-
tors were derived from measured performance curves
and there were five free parameters. The regression was
highly significant (r2=0.66, P<0.001, n=22, Fig. 11A).
The coefficient for the quadratic component rose from
b1=�0.32 to b2=0.55 between sessions 1 and 2, con-
firming an increased contribution to the BOLD signal
from the second, coordination-related factor, as a result
of learning. We then used these same regression coeffi-
cients measured, under experiments 1 and 2, to predict
the BOLD signal expected in experiment 3, which had
been performed under constant error conditions. The
predictions were close to the mean BOLD values mea-

sured, and the relative changes between the two condi-
tions and across the two sessions are in the appropriate
directions (Fig. 9, white dots).

Our regression model assumes that the error com-
ponent is constant before and after learning, as only a
single coefficient, a, was used. It has been suggested that
this assumption may be wrong, and that the error term
might also change as function of training. Hence, an
alternative regression model was tested with separate
error terms for sessions 1 and 2, thus increasing the
number of free parameters, but this resulted in an
equally good fit to the data (r2=0.66). The two error
coefficients in the new model were within 8 and 25% of
the original single error term. More importantly, the
coefficients for the coordination term, b were almost
identical across these two regression models—they
changed by less than 2%. In both models, all regression
coefficients except b1were significantly different from
zero. Thus either regression model is robust, and they
only differ in their parcellation of weights between the
error term a and the constant terms cS from sessions 1 to
2. Both models, however, suggest the coordination term
becomes significant after learning.

Decomposing the BOLD signal

The good fit of the regression model (Eq. (2), Fig. 11A)
supports our suggestion that performance error and a
coordination factor both add to the measured BOLD
signal. Hence, the BOLD levels seen in sessions 1 and 2
reflect contributions from both terms. The regression
equation can be used to estimate the BOLD signals that
might be expected in ideal conditions, uncontaminated
by any performance changes, by setting the error coef-
ficients to zero and adjusting for the constant terms
(Fig. 11B). Alternatively, using the error regression
coefficient (a=0.0742) we can estimate and remove from
the measured BOLD signal any contribution from these
terms, leaving an adjusted BOLD estimate (Fig. 11C).
Note that the curves in Fig. 11C are similar to those in
Figs. 7C and 8C, shifted positively to account for the
drop in performance errors across sessions. From either
method we would expect an increase in BOLD signal in
the cerebellum after learning, if the performance errors
did not change. This was confirmed directly by experi-
ment 3.

Specificity of learning

Optimum manual tracking performance in this dual eye
and hand tracking task is normally found when the
ocular target leads the manual target by k=75–90 ms
(Figs. 2 and 3, black bars, and Miall et al. 2001; Miall
and Reckess 2002). Ocular performance shows only
modest changes across conditions in this task, and the
eyes faithfully track the ocular targets for the great
majority of every trial (unpublished data). Hence suc-
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cessful oculomotor tracking of the ocular target is
probably used to derive a predictive signal that then
assists manual tracking, and this process is improved by
practice at the task. In experiment 2, the additional
learning experience in the synchronous condition
(s=0 ms) shifted this group’s point of optimum per-
formance to k2=156 ms, i.e. to a point at which the best
performance was seen when the eye movement preceded
the hand by 156 ms. This shift may reflect a balance
between the extent to which longer lead times gained
from eye movement can assist in predictive program-
ming of arm movements, and an upper useful limit of
the associations between the two signals. Clearly if the
eye anticipated the hand by many hundreds of milli-
seconds, the predictive value would be low.

However, manual-tracking performance was also
improved for group A, who trained under the condition
when the ocular target lagged behind the manual target,
and in this case the predictive information from ocular
pursuit of the target should be of limited utility. So in
this case, the subjects may have partly decoupled the
now inappropriate ocular signals from the manual
control signals, to improve manual performance. This
suggests that experience of different eye–hand temporal
coupling conditions alters the balance between the rel-
ative contribution of manual and ocular control signals.
Although task-specific learning and thus a shift of peak
performance toward their training condition of �304 ms
was observed for subjects in experiment 1, we do not yet
know if subjects would shift even further toward the
�304 ms point if they were given more extended train-
ing, nor whether they could learn under more extreme
temporal offsets. By analogy with the predictive interval
between conditioned stimuli and responses in associative
learning tasks (Ohyama et al. 2003), we would expect
greater difficulty at longer intervals.

The change in BOLD signal seen within the cerebel-
lum further suggests that it is the neural locus of the
practice-related learning. Imamizu et al. (2000, 2003)
argue for tool-specific localised changes in cerebellar
cortical activation; activation in their studies is more
lateral than ours, in areas reported active in cognitive
tasks or attention demanding tasks (Allen et al. 1997;
Cabeza and Nyberg 2000). In our task, learning does not
involve adapting to new or modified tools, but adapta-
tion to changed temporal relationships between eye and
hand. That our subjects are not learning a novel ‘‘tool’’
is further supported by finding that the areas of signifi-
cant change in activation after learning are indeed visuo-
motor areas (Fig. 5). In fact, we found spatial overlap in
all three experiments between those areas activated due
to the basic tracking conditions and the areas showing
significant change in activation after learning (Fig. 10).
Two regions showed greatest overlap, the paramedian
and biventer lobules (VIII; Schmahmann et al. 1999)
and the vermis (VII). Moreover, the overlap seems to
depend on the training conditions. In experiment 1,
subjects were trained in the condition where the manual
target anticipated the ocular target, and shifted their

peak performance accordingly (hand leading eye). In
this experiment, the spatial overlap between those voxels
showing significant change in functional activity and
voxel active across all tracking conditions was mainly in
the biventer lobule. For experiment 2, subjects trained in
the coordinated condition and shifted their peak per-
formance toward even higher ocular lead times. The
areas of activation overlap for this group (experiments 2
and 3) were largely in the ocular vermis.

This pattern suggests that local visuo-motor areas
within cerebellar cortex are differentially affected by
learning. When the hand action predicts ocular motion,
an increased component of the BOLD signal related to
the time-offsets is observed in paramedian/biventer areas
related to limb movement (Grafton et al. 1992; Miall
et al. 2000, 2001). In contrast, when ocular motion
predicts hand action, an increased component of the
BOLD signal related to the time-offsets is observed in
the oculomotor vermis (Lewis and Zee 1993; Petit et al.
1996; Carter and Zee 1997; Desmurget et al. 1998; Miall
et al. 2000).

Finally, we note that (Seidler et al. 2002) recently
argued that the cerebellum was not the locus for motor
learning, because they saw no activation differences
when performance was held constant, despite learning
being demonstrated. Their task was, however, the serial
reaction time task in which an important aspect of
learning is the implicit learning of a sequence of button
press responses. The difference between our tasks implies
that sequence learning may involve areas other than the
cerebellum, but for learned eye–hand coordination the
cerebellum is a major locus supporting learning.

In summary, we suggest that the cerebellar activation
we have observed across the different eye–hand time-
offset conditions has contributions related to perfor-
mance error and to the expected temporal relationships
between eye and hand movement. The latter component
changes after a period of training, consistent with the
observed change in performance. We suggest that this
cerebellar activity represents a predictive signal, origi-
nating from cerebellar areas concerned with control of
the leading effector (eye or hand), which is used to im-
prove the oculo-manual tracking performance. In sum,
the cerebellar processing represents the internal forward
model signal that we propose underlies coordinated ac-
tion, combined with an error term that might itself be
used to drive learning of the forward model.
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