
Of note, a recent study that compared

complement component expression

and activation in the hippocampi of

patients with multiple sclerosis corro-

borated this notion (Michailidou

et al., 2015). In accordance with the

findings of Jürgens and co-workers,

synaptic density was decreased in

demyelinated but also in myelinated

hippocampi compared to control

brains. Additionally, the complement

components C1q and the C3 activa-

tion products localized to synapses

that were within reach of microglial

cellular processes, implicating active

synaptic elimination of complement-

tagged synapses in multiple sclerosis.

Taken together, these results indi-

cate that synaptic loss occurs widely

and independently of demyelination

and axonal degeneration in the grey

matter of multiple sclerosis brains.

While the pathophysiology remains

enigmatic, there is circumstantial evi-

dence that continuous and diffuse

activation of the classical complement

cascade might be involved in this pro-

cess, which could drive neuronal loss

and disability progression. This

exciting finding warrants additional

mechanistic investigations.
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Cerebellar damage limits reinforcement
learning

This scientific commentary refers to

‘Effective reinforcement learning fol-

lowing cerebellar damage requires a

balance between exploration and

motor noise’, by Therrien et al.

(doi:10.1093/brain/awv329).

An exciting challenge for research in

motor learning is to disentangle the

multiple processes involved, and to

tie these down to distinct neural sys-

tems. About 17 years ago, Doya pro-

posed that the cerebellum, basal

ganglia and cerebral cortex were sep-

arately responsible for supervised

learning, reinforcement learning, and

unsupervised learning, respectively

(Doya, 1999, 2000). Supervised

learning is driven, unsurprisingly, by

signals provided by a ‘supervisor’ and

is typically equated with error-based

learning: after an action, an error in

performance is processed, and subse-

quent actions are adjusted to try to

minimize the error. Reinforcement

learning is driven by rewards and pun-

ishments: exploratory actions are tried

Glossary

Complement: The complement system is an essential component of the innate immune system, which is activated on recognition of microbial

patterns, cellular abnormalities or modified extracellular molecules. This proteolytic cascade tags the activating structure for elimination and at the

same time elicits an inflammatory response, thereby recruiting additional immune cells.

Opsonization: The process whereby deposition of molecules, such as activation products of the complement cascade, on the surface of a target

marks that target for recognition and uptake by a phagocytic cell.

Golgi-Cox method: A histological method based on metallic impregnation of neurons that allows distinct visualization of cell soma, axons,

dendrites and spines.

4 | BRAIN 2016: 139; 2–12 Scientific Commentaries

 by guest on January 8, 2016
http://brain.oxfordjournals.org/

D
ow

nloaded from
 

http://brain.oxfordjournals.org/content/139/1/101.full.pdf+html
http://brain.oxfordjournals.org/


out and each action’s outcome is eval-

uated; learning aims to maximize the

value of future action choices.

Unsupervised learning occurs in the

face of repeated experience of the en-

vironment, and generates a mapping

of its statistical regularities: it can be

driven by Hebbian learning so that,

for example, similar sensory events

become associated with one another.

In the motor domain this can equate

to yet another form of learning, use-

dependent learning, where there is a

bias to produce actions more similar

to previous ones. For many years,

these learning processes were thought

of as functionally and anatomically in-

dependent. However, huge efforts are

now being made to understand how

these various processes interact. In

this issue of Brain, Therrien, Wolpert

and Bastian have added to these

efforts by testing and modelling how

patients with cerebellar ataxia differ

from healthy controls in performing

error- and reinforcement-learning

tasks (Therrien et al., 2015). Using a

mechanistic model, they show that op-

timal learning with reinforcement feed-

back requires subjects to balance the

variability in their exploration of the

task with their uncontrollable motor

variability (noise). While patients

with ataxia showed normal levels of

exploration variability and were able

to learn through reinforcement feed-

back, their high levels of motor noise

limited the extent of this learning.

In more detail, participants per-

formed a reaching task that required

them to adapt to a visuomotor dis-

placement, such that visual or

reward feedback on the reaching

movement was displaced from the

hand’s true position. In two related

experiments, healthy young adults,

or patients with cerebellar ataxia

and age-matched controls either

received error feedback at the end of

each movement (‘error-based feed-

back’ - see Glossary); or they received

a reward signal indicating good per-

formance if they landed close to the

target (termed ‘open-loop’, a condi-

tion only tested on the younger

group). In a third condition, they

were rewarded if they performed

better than the average of the last

10 movements (‘closed-loop’ reward

feedback, as the feedback reflected

prior performance). Participants with

ataxia and healthy controls showed

learning under both error-based and

reward feedback conditions. But

while reward feedback led to near

perfect retention of the learned behav-

iour during a post-learning test phase,

error feedback learning was not re-

tained and decayed in the test phase.

These differences between error and

reward feedback are in line with pre-

vious findings (Shmuelof et al., 2012).

The normal learning with error feed-

back in the ataxia group is, at face

value, inconsistent with Doya’s

theory. However, the complete lack

of retention of this adaptive response

led Therrien et al. to suggest that the

apparent learning may in fact have

been a result of non-cerebellar online

correction processes (Tseng et al.,

2007).

The key finding of this paper, how-

ever, is that patients with ataxia did

show substantial learning and reten-

tion under reinforcement (reward)

conditions. With support from a

mechanistic model of the learning

process, Therrien et al. suggest that

reinforcement learning depends on a

balance between exploration variabil-

ity and motor noise. While the pa-

tients with ataxia showed similar

levels of exploration variability to

age-matched controls, their increased

level of motor noise meant they learnt

less through reinforcement.

This paper is interesting, and its con-

clusions are in line with other work

suggesting that one consequence of

cerebellar damage is degradation of

the brain’s ability to estimate the

state of the motor system, i.e. loss of

predictive knowledge regarding the

outcome of motor commands that

would normally be used to update a

representation of the motor system’s

state (Miall et al., 2007; Tseng et al.,

2007). However, the modelling work

did seem to predict a relationship be-

tween exploration noise and motor

noise that was only an approximate

match to the group results. In fact,

none of the participants fell within

the ‘sweet spot’ that would produce

optimal reinforcement learning. This

suggests that other unknown factors

may limit exploration noise, or (as

with the ataxia group) covertly in-

crease motor noise.

There is also a need for illumination

of the neural mechanism that under-

pins the relationship between cerebel-

lar-dependent motor noise and

reinforcement learning. Recent work

has provided anatomical evidence for

direct bidirectional links between the

cerebellum and the basal ganglia (Fig.

1) (Bostan and Strick, 2010). It is

Figure 1 The basal ganglia (green) and cerebellum (blue) have historically been

associated with independent roles in reinforcement- and error-based learning,

respectively. However, the work of Therrien et al. (2015) suggests that cerebellar damage

limits reinforcement learning. Could the direct connections between the cerebellum and basal

ganglia reported by Boston and Strick (2010) provide an anatomical explanation for this

result? Figure adapted from Doya (2000).
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possible that the cerebellum could pre-

dict the sensory state of an action and

feed it forward to the basal ganglia,

which in turn could estimate the

value of the new state through re-

inforcement processes. Without the

cerebellum, predicted action outcomes

may be poorly represented, or even

unknown, and so linking them to

reward values would be more difficult.

This increased (motor) noise in pre-

dicting movement outcomes could

lead to greater uncertainty within the

basal ganglia with respect to reward-

based predictions and thus a reduced

ability to adapt behaviour. However,

another thing to mention from the

Therrien et al. study is that although

their patients with ataxia showed

almost double the motor noise of

age-matched controls, the differences

in reinforcement learning were small.

This suggests that the cerebellum may

not have a dominant influence on

basal ganglia-dependent reinforcement

learning. What the reverse connections

from basal ganglia to cerebellum

might convey is less clear. One possi-

bility, driven by recent evidence that

reward and punishment differentially

influence motor learning (Galea et al.,

2015), is that the reinforcement signals

might modulate the cerebellum’s sensi-

tivity to incoming error signals. In

other words, the basal ganglia might

prime the cerebellum to weight its pre-

dictions (or to update its forward

models), based on predicted reward

or punishment. These bilateral connec-

tions may thus ensure that the basal

ganglia and cerebellum work together,

so that reward predictions and state

estimates are both tuned to reflect con-

fidence levels in each prediction.

We suggest that a fruitful way to

test these interactions would be to

manipulate exploratory and motor

noise at several different levels in the

system and examine their effects on

the tasks and model described by

Therrien et al. One could inject

motor noise peripherally, by electrical

stimulation of the muscles during

action, or centrally, for example by

transcranial random current stimula-

tion over the motor or premotor

cortex. One might inject variability

into the state estimation process by

adding noise to the feedback after

each action, either visual or proprio-

ceptive, or by testing participants with

sensory loss. And one might mimic

the effects of poor state estimation

in the cerebellum by transcranial elec-

trical or magnetic stimulation (Miall

et al., 2007). The goal would be to

understand in which scenarios motor

noise has a detrimental effect on re-

inforcement learning. If increased

motor noise must originate from the

cerebellum, this may indicate that the

direct connection from the cerebellum

to the basal ganglia plays a specific

role in motor-based reinforcement

learning.

Can one also manipulate explor-

ation noise? Until recently, there was

no direct evidence that reward-based

exploration during a motor task was

dopamine- or basal ganglia-

dependent, despite much speculation

(Izawa and Shadmehr, 2011).

However, it has now been shown

that patients with Parkinson’s disease,

in whom dopamine levels are

reduced, exhibit impaired exploration

variability during a motor reinforce-

ment task (Pekny et al., 2015).

Therefore, a strong prediction is that

patients with Parkinson’s disease

would show impaired exploration

variability but normal motor noise

within the current task. This could

also be tested in a more sensitive

manner with drug studies that either

block D1/D2 dopamine receptors

(haloperidol) or specifically block D2

receptors (sulpiride). Finally, there

might be exciting opportunities

through the use of deep brain stimu-

lation to centrally block reinforce-

ment learning or to add exploration

noise. One idea would be to compare

patients with deep brain stimulators

implanted either in the basal ganglia

(Parkinson’s disease) or thalamus (for

dystonia). As the thalamus provides a

link between the cerebellum and basal

ganglia, one might predict that basal

ganglia deep brain stimulation would

manipulate reinforcement learning

through changes in exploration vari-

ability, whereas thalamic deep brain

stimulation may alter reinforcement

learning through changes in motor

noise.

R. Chris Miall and Joseph Galea

School of Psychology, University of

Birmingham, Birmingham B15 2TT, UK

Glossary

Error correction: Feedback of errors can be used to directly improve performance. In supervised or error-based learning the error vector gives

both the magnitude and the direction of the error, and the learning system then shifts subsequent performance in the opposite direction, with the

intention to reduce the error on subsequent trials.

Hebbian learning: In 1949 Donald Hebb proposed that if a neuron is causally involved in activating one of its neighbours, then some metabolic or

growth process will make it more effective in activating that neighbouring cell. Although this has been reduced to the statement that ‘cells that fire

together, wire together’, the causal chain from one cell to the next is important.

Open and closed loops: If the outputs of a dynamical system affect its inputs, the system can be called a ‘closed loop’, otherwise it is an ‘open

loop’.

Reinforcement learning: The process by which an animal or artificial system can learn to optimize its behaviour using rewards and/or punish-

ments. The value of actions reinforces those behaviours that maximize reward or minimize punishment. However, the feedback reward or

punishment does not dictate how to improve performance.

State estimation: Dynamical systems transform inputs into outputs, but the outputs do not necessarily fully reflect the state of the system, or do

not provide feedback about the state variables that must be controlled. An estimate of the system’s state, updated based on its last known state and

on inputs, can provide valuable ‘model based’ control.
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What lies beneath grey matter atrophy in
multiple sclerosis?

This scientific commentary refers to

‘Cortical atrophy patterns in multiple

sclerosis are non-random and clinic-

ally relevant’, by Steenwijk et al.

(doi:10.1093/brain/awv337).

Over the last 20 years, there have been

remarkable advances in our under-

standing of pathogenic mechanisms in

multiple sclerosis, particularly those re-

sponsible for relapses and remissions.

Over the same period a series of in-

creasingly effective treatments have

become available that suppress re-

lapses. However, there has been a con-

spicuous lack of success in treating

progressive multiple sclerosis, which

most people with the condition even-

tually develop, and which is associated

with the greatest disability. This has

led to a reappraisal of pathological

processes underlying progressive mul-

tiple sclerosis, and the recognition

that pathology is more extensive and

complicated than formerly thought. In

this issue of Brain, Steenwijk and co-

workers look specifically at cortical at-

rophy in patients with long-standing

multiple sclerosis, and reveal that

such atrophy occurs in largely non-

random patterns (Steenwijk et al.,

2016).

Previously, a commonly held view

of multiple sclerosis was of a multi-

focal and multi-phasic immune-

mediated white matter inflammatory

demyelinating disorder, and indeed

the suppression of such a process

has underpinned the major progress

in disease-modifying treatment to

date. However, it is now abundantly

clear that in progressive multiple

sclerosis, demyelinating lesions may

be as extensive in grey matter as

they are in white matter, and that

there is substantial and widespread

neuro-axonal loss, not only in white

matter lesions but also in normal-

appearing white matter, and in both

the cortical and deep grey matter. It is

also clear that grey matter pathology

is present in early relapsing-remitting

multiple sclerosis and increases with

time. Neuro-axonal loss is now

thought to be responsible for a

major proportion of irreversible pro-

gressive disability in multiple scler-

osis, but its causes are poorly

understood, particularly when it

occurs in the grey matter.

Brain atrophy in multiple sclerosis,

as measured during life by MRI,

is likely to reflect neuro-axonal loss

(although other factors that can

affect brain tissue volumes should be

borne in mind, especially when assess-

ing short-term changes). Loss of brain

tissue does not occur uniformly, and

in progressive multiple sclerosis it is

most apparent in brain grey matter,

affecting some cortical and deep grey

matter regions more than others

(Bendfeldt et al., 2011). In vivo

MRI-clinical correlation studies have

identified significant associations of

grey matter atrophy with cognitive

impairment, physical disability and

progressive multiple sclerosis that are

independent of associations with

other imaging abnormalities, such as

white matter lesion load. All-in-all,

there are compelling reasons to try

to better understand the mechanisms

of grey matter atrophy and the

neurodegeneration that it reflects.

In this issue of Brain, Steenwijk and

colleagues report on their work

looking at patterns of cortical grey

matter atrophy in multiple sclerosis

(Steenwijk et al., 2016). They used
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