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Sensory-motor integration has frequently been studied using a single-step change in a control variable such as prismatic lens angle and
has revealed human visuomotor adaptation to often be partial and inefficient. We propose that the changes occurring in everyday life are
better represented as the accumulation of many smaller perturbations contaminated by measurement noise. We have therefore tested
human performance to random walk variations in the visual feedback of hand movements during a pointing task. Subjects made discrete
targeted pointing movements to a visual target and received terminal feedback via a cursor the position of which was offset from the actual
movement endpoint by a random walk element and a random observation element. By applying ideal observer analysis, which for this
task compares human performance against that of a Kalman filter, we show that the subjects’ performance was highly efficient with Fisher
efficiencies reaching 73%. We then used system identification techniques to characterize the control strategy used. A “modified” delta-
rule algorithm best modeled the human data, which suggests that they estimated the random walk perturbation of feedback in this task
using an exponential weighting of recent errors. The time constant of the exponential weighting of the best-fitting model varied with the
rate of random walk drift. Because human efficiency levels were high and did not vary greatly across three levels of observation noise,
these results suggest that the algorithm the subjects used exponentially weighted recent errors with a weighting that varied with the level
of drift in the task to maintain efficient performance.
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Introduction
In day-to-day life, people naturally adjust the relationship be-
tween sensory inputs and motor output signals. These adaptive
changes can be seen when subjects reach accurately under various
manipulations of the visual input such as wearing prescription
spectacles, or wedge prisms (Welsh, 1986), and by adaptation of
movement trajectories to mechanical disturbances caused by
clothing, by carried loads, or by experimental perturbations
(Lackner and Dizio, 1994; Shadmehr and Mussa-Ivaldi, 1994;
Bhushan and Shadmehr, 1999; Sainburg et al., 1999). We suggest
that everyday sensory-motor changes and fluctuations are more
typically attributable to an accumulation of small perturbations,
rather than a single-step change, and are better represented as a
random walk of the sensorimotor mapping. We propose that the
adaptive process is likely to be “tuned” to respond to these ran-
dom fluctuations.

To test whether people are indeed good at performing in the
face of small and irregular incremental sensory perturbations, we
have adopted the method of ideal observer analysis (Fisher, 1925;
Burgess et al., 1981). This allows us to measure the fundamental
performance of the human sensorimotor system by explicitly cal-
culating the best possible performance that could be achieved
given an optimal algorithm and then expressing subjects’ perfor-

mance as a fraction of this ideal performance (Geisler, 1989).
Although the exact interpretation of subjects’ performance in a
task depends on the particular ideal observer used in the analysis,
very good performance, close to the ideal, can provide clues about
how subjects are performing the task and thus yield insights into
the adaptive process.

The task that we chose was one that required subjects to con-
tinually adjust their movements to cumulative small changes in
the mapping between the visual and motor coordinates and one
in which the nature of the ideal observer for the task is known.
This was a simple pointing task (see Fig. 1) during which subjects
altered their movement amplitude, on a trial-by-trial basis, to
attempt to position a cursor displayed only at the end of each
movement onto a visual target.

We compare the human performance in this task with that of
the ideal algorithm, a Kalman filter (Kalman and Bucy, 1961) and
demonstrate high Fisher efficiencies. We then modeled the ob-
served human performance with a set of simple linear adaptive
algorithms to identify which algorithm could best match the data.
The two best-fitting algorithms (a finite impulse response filter and a
modified delta rule) have strong similarities and suggest that the
algorithm used by our subjects is based on a short-term store of
previous experience, weighted by recency (Scheidt et al., 2001).

Materials and Methods
Experimental procedure
Four adult subjects (age 24 –33 years; two males, two females) gave in-
formed consent and participated in this study. The task was based on a
reaching movement with their preferred hand toward visual targets to
position a cursor that was offset from their true hand position onto the
target.
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Experiment 1. In the first experiment, subjects were denied direct vi-
sion of their hand. If there had been no perturbation, this task would
simply measure the accuracy of their target pointing movements. In-
stead, we dynamically manipulated the mapping between the hand end-
point position and the displayed cursor location (see Fig. 2 A) by adding
a displacement Dt on trial t using the following equations:

Pt � Ht � Dt , (1)

Dt � Wt � Nt , (2)

Wt � Wt�1 � N�0, �W�; W0 � 0, (3)

Nt � N�0, �N�. (4)

Pt is the displayed position of the cursor on trial t; Ht is the position of the
hand; Dt is the applied displacement and consisted of Wt , a random walk
component (a Wiener process) with drift parameter �W , and a random
observation noise component Nt with standard deviation �N. The nota-
tion N(0, �) represents a Gaussian distributed random variable with
zero mean and SD �. The average sum squared distance between the
displayed cursor and the target position Tt was then taken as a measure of
performance:

error �
1

N�
t�1

N

�Pt � Tt�
2 . (5)

Despite sounding abstract and difficult, this process of adjusting move-
ments to the presence of a slowly changing displacement proved to be
very natural, and our subjects had little difficulty performing it (see Figs.
2 B, 3).

Visual targets and the feedback cursor were displayed via a 640 � 480
resolution data projector onto a horizontal back-projection screen and
viewed in a semi-silvered mirror. The virtual image of target and feed-
back appeared in the plane of a large digitizing table, which was used to
record the position of a digitizing pen held in the subject’s right hand [for
further details see Ingram et al. (2000)]. An opaque card placed just
beneath the mirror then blocked vision of the hand. The start position
was a white square target (1 � 1 cm) aligned with the apex of a “V”
consisting of two wooden rulers, with the apex positioned at the midline
and 14 cm in front of the chin rest (Fig. 1). On each trial the subject heard
a computer tone and saw a white cross-shaped cursor (1 � 1 cm), which
was aligned with the actual pen position. The subject was required to
move the cursor within the starting box, and after 100 msec at this posi-
tion the starting box and cursor disappeared and a target square (1 � 1
cm) was presented 15, 20, or 25 cm straight ahead from the starting
position, in a pseudorandom order. The subject was asked to make a
single comfortable movement to the target. When the pen velocity fell
below a threshold of 1 cm/sec for 75 msec, a second computer tone
signaled the end of the movement. The cursor was immediately displayed
at a stationary position along the vector from start to final pen position,
plus or minus some additional displacement distance (Eq. 1). Subjects
were told that this additional displacement would alter from trial to trial
in both an unpredictable way and a way that could be followed. They
were instructed to “try and get the cursor to land on the target” and to
minimize the error between the cursor position and the target across the
session of 102 trials. Trials were self-paced but on average took 2–3 sec to
complete. As the subject moved back from the target position, the cursor
again disappeared, only reappearing as the pen came within 3 cm of the
start position, guided by the wooden V shape. Each subject repeated eight
conditions in three separate sessions, each with three different values of
the SD of the observation noise (�N � 0, 1.5, or 3.0 cm) and three SDs of
the random walk step size (�W � 0, 0.75, or 1.5 cm). The eight conditions
covered all permutations of these values except the zero noise combina-
tion (i.e., �N � �W � 0 cm). Sixteen different arrays of 102 noise values
were generated for the observation noise and for the drift noise using
Matlab (The MathWorks, Inc.). They were then scaled with the appro-
priate SD. Each series was accepted if the resultant displacement was less
than �10 cm, thus limiting the amplitude of desired arm movements to

the 5–35 cm range. The drift noise set and the observation noise set were
independent and uncorrelated.

Experiment 2. Four subjects were then tested in the same task but with
direct vision of the hand; three of these had also been tested in the no-
vision condition. Removing the card beneath the semi-silvered mirror
and illuminating the digitizing table below the mirror allowed vision of
the hand. Thus they saw the virtual image of the target via the mirror, the
static cursor displaced from the hand at the end of each trial, and also saw
their own hand throughout each trial. The same exact noise sequences
were used in corresponding vision and no-vision conditions for each
subject; the two subjects that each completed only one of the no-vision or
the direct-vision conditions were also presented with the same noise
sequences.

Ideal observer analysis
Given that the observation noise component (Nt ) was unpredictable,
optimal performance in this task would be achieved if the subject could
estimate the random walk displacement Ŵt , and thus make a pointing
movement of size:

Ht � Tt � Ŵt . (6)

Here Ŵt is the subject’s estimate on trial t of Wt , based on previous
observations (previous errors). The optimal least-squares and
maximum-likelihood algorithm for this task is the Kalman filter (Kal-
man and Bucy, 1961), assuming that the filter is provided with the input
statistics �N and �W. The basic operation of the Kalman filter is to use the
relative confidence in each new measurement (which is determined by
�N ) and in the previous estimate of Ŵt (which is dependent also on �W )
to determine how they are combined to produce the next estimate. Note
that the noise statistics, �W and �N , are fixed values given to the Kalman
filter; in contrast, when our subjects began each session they were not
told the size of the two noise parameters. With a single known set of drift
and observation noise parameters, �W and �N , it is impossible that any
other observer can perform better than the Kalman filter. The Kalman
filter therefore represents an upper bound on subjects’ performance.

System identification by modeling subjects’ performance
By modeling the movements that our subjects made in response to feed-
back on previous trials, we can estimate the algorithm they are using to
keep their arm in calibration. We thus used a series of simple linear
models to find good fits to the human data from the with-vision condi-
tion and explored whether these models failed to capture significant
nonlinear components of the data.

Model 1: correct the last error. In this task the most relevant information
is given by the recent history of arm movement errors, and the simplest
algorithm that subjects could use is to estimate the current displacement
from the last movement error:

Ŵt � Dt�1 . (7)

This algorithm would be optimal to estimate the random walk compo-
nent if there were no observation noise (�N � 0). It represents the Null
hypothesis that subjects simply used the last visual error to estimate
where to move to on the next trial.

Model 2: the delta rule. The delta/Rescorla-Wagner rule (Rescorla and
Wagner, 1972; Sutton and Barto, 1981) creates an estimate based on
previous visual errors but only makes a partial shift in the direction of
each error. Thus it averages over some of the noise in the feedback. As
well as being more efficient in situations with observation noise (the delta
rule is the most efficient static linear estimator for this task) (Cox and
Miller, 1965), it provides an excellent model of biological behavior in
many different situations. Defining the error on the previous trial as
et�1 � Dt�1 � Ŵt�1, i.e., the difference between the actual distortion
and that estimated, the delta rule estimates the distortion:

Ŵt � Ŵt�1 � Ket�1 , (8)

where K is a learning rate or weighting parameter. Note that because of
the iterative nature of Equation 8, the weighting given to a particular
error on trial t is an exponentially decaying function of the number of
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trials since that error occurred. Because of the random observation noise
in the task, it is necessary to average over a number of previous measure-
ments to form an accurate estimate. However, the random walk compo-
nent of the task means that more weight should be placed on the recent
measurements (in which the walk component will be closer to that esti-
mated). Hence exponential weighting using Koptimal represents the opti-
mal compromise between these two conflicting constraints of averaging
over trials while also being sensitive to change. A proof of this optimality
can be found in Cox and Miller (1965), and the value of Koptimal can be
found by setting Kt � Kt�1 in the Kalman filter (next section). The delta
rule can be derived from a large number of diverse sources: mathematical
psychology (Estes, 1950), animal learning theory (Rescorla and Wagner,
1972), and in neural networks, the linear delta rule (Sutton and Barto,
1981). We justify its use as the static linear model providing the optimal
least-squares estimate for Ŵt given that the values of �N and �W are fixed
and known. Here the parameter K does not change as a function of time,
in contrast to the Kalman filter.

Model 3: the Kalman filter. If the values of the drift (�W ) and noise
(�N ) are known and constant, then the optimal estimator for Wt is a
Kalman filter (Kalman and Bucy, 1961). In our experiment the noise and
drift were constant within blocks of trials but differed between them.
With fixed �W and �N , an estimator based on the Kalman filter has the
same form as the delta rule except that the weighting Kt varies with time.
Under most circumstances, Kt starts high at the beginning of a block
(when the certainty of the estimate is low) and stabilizes to Koptimal over
time. The exact details of the Kalman filter can be found in any book on
control theory.

Model 4: the finite impulse response filter. The models above form esti-
mates based on previous errors but are constrained by how these errors
are weighted. The finite impulse response filter relaxes this assumption
by retaining linearity but allowing an arbitrary linear weighting of previ-
ous errors (Ljung, 1999). More formally:

Ŵt � �
��1

16

X�Dt�� , (9)

where X� is the weight attributed to the error � time steps ago. The finite
impulse response model, given enough degrees of freedom, can capture
an arbitrarily complex linear mapping. We chose to use only the last 16
errors as a compromise between power and the problems of overfitting.
Examination of the weights after fitting the model (see Fig. 6) showed
that they decayed to approximately zero before � � 16, indicating that a
model using only the last 16 errors was reasonable.

Model 5: the modified delta rule. Previous work (van Beers et al., 1999)
has shown that the combination of visual and proprioceptive informa-
tion in estimating hand position can be well modeled using an optimal
statistical framework. Given two independent information sources about
the state of the arm, the optimal least-squares estimate is a weighted
average of the two sources. The weightings are determined by the relative
noise values for the two sources, with the formula for combined predic-
tion (Ŵt

combined) being given by:

Ŵt
combined � ��Ŵ t

vision � �pŴ t
proprioception , (10)

where the weighting for vision is given by:

�� �
��

�2

��
�2 � �p

�2, (11)

where ��
�2 is the precision (the inverse of the variance) of the visual

estimates and �p
�2 is the precision of the proprioceptive measurements,

and the weighting for proprioception given by:

�p � 1 � �� . (12)

The relative weighting is determined by the uncertainty in both estimates
(as measured by the SD), with the more reliable estimate weighted more
strongly. In nearly all circumstances where vision of the arm is available,
as in our second experiment, proprioception will be weighted far less
than visual information (Welch and Warren, 1986). Furthermore, in the
data that we modeled (experiment 2), proprioceptive information could
not provide information useful to minimize the visual error because
there was no perturbation of proprioceptive system, and the subjects had
direct vision of both their hand and the displaced cursor. However, in
general, proprioception can be expected to provide useful information
about hand location, and so it may still have a non-zero weight in Equa-
tion 10. We therefore tested a modified delta rule model estimating Ŵt

from a combination of proprioceptive information and visual informa-
tion calculated using the delta rule (Ŵt

delta). Because the manipulation of
the visual feedback could have no effect on the estimate of Ŵt based on
proprioception, so Ŵt

proprioception � 0; t � 0. Substituting in Equation 10
gives:

Ŵ t
combined � ��Ŵ t

vision � 0, – where �� is � 1.0. (13)

Thus the modified delta rule calculates the estimate of Wt by:

Ŵt � Ŵt�1 � K�Dt�1 � �Ŵ t�1
vision� (14)

(compare with Eq. 8).
Mixture of experts. As a test of linearity (see Results) we also used a

mixture of two experts (Jacobs et al., 1991), each based on the modified
delta model, Model 5. The output of the mixture of experts model was the
weighted sum of their independent estimates:

Ŵt � �
i�1

n

	t
iŴt�1

i , (15)

for n � 2 experts. The initial value of both summing weights 	i was 0.5.
The advantage of such a model is that it would allow different weighting
terms K for differing levels of displacement. Such a situation could occur
if the subjects were adapting to a changing gain rather than a displace-
ment. In this case the mixture of experts should provide a superior fit.

Fitting the models
All but the first “null” model had free parameters that need to be esti-
mated. The models were separately fitted to the data for each subject but

Figure 1. The visuomotor task. A target (■ ) was presented at position Tt , and the aim of the
subject was to make a movement to bring a cursor (�) to land at this location. The cursor
position (Pt ) was displaced from the hand movement (Ht ) by an amount determined by a
random walk (Wt ), plus a random noise component (Nt ). Therefore for the subject to perform
optimally, the size of the random walk component would need to be estimated (Ŵt ) and taken
into account when making the movement (subject’s optimal movement would be Ht � Tt �
Ŵt ; Eq. 6).

3068 • J. Neurosci., April 1, 2003 • 23(7):3066 –3075 Baddeley et al. • System Identification Applied to Visuomotor Performance



were constrained to use the best-fitting parameters across all conditions
for each subject. These were estimated using the Nelder–Mead simplex
(direct search) method in Matlab (The MathWorks, Inc.) to minimize
the sum-squared error. This search can get trapped in local minima, and
so each search was started from eight different initial conditions and the
best fit was used. Only the mixture of experts model found local minima.

Comparing models
Given that the models had different numbers of parameters, comparison
between them must be independent of their complexity. More complex
models, with more parameters, can provide a superior fit to a given
dataset by fitting the noise in the data, even if the model is not a better
description of the underlying process. So to provide a complexity-
independent comparison, we used the method of N-fold, matched cross
validation (Baddeley and Tripathy, 1998). The data for each subject was
split into the 24 different runs (eight conditions times three repeats).
Using the first 23 runs, the best-fitting (least-squares) parameters were
found for a pair of models, and then the mean squared error for the
excluded 24th session for both models was then calculated using these
parameters. The process of calculating optimal parameters and recording
the excluded error for both models was repeated 24 times for each sub-
ject, each time excluding a different session, and for all subjects.

This results in 24 � 5 (sessions � subjects) pairs of numbers repre-
senting the errors for the two models. The errors were tested for a signif-
icant difference in means using a two-tailed matched-sample t test. The
comparisons found were either very significant (p 	 10 �5) or not close
to significance. Any correction for multiple comparisons would there-
fore make no difference to our interpretation, and none was used. This
procedure has reasonable characteristics as a method of non-linear
model comparison (Dietterich, 1998) and has the advantage of its sim-
plicity over Bayesian (Mackay, 1992) and information theory-derived
measures (Akaike, 1974). We chose to use a nonlinear model comparison
method for our linear models so that later comparison with nonlinear
models is simplified.

Results
No-vision condition
Typical data from a series of 11 trials within a session are shown
for a single subject in Figure 2B. Here the trial-by-trial errors in
placing the cursor on the target are shown by vertical lines. This
subject’s estimation of the displacement on trial 88, for example,
can be determined by the position of the pen (not the cursor)
with respect to the target position on trial 89. This is indicated by
the connected series of arrows. Note how the subject adjusts her
estimate of the displacement over succeeding trials in response to
the feedback error. Hence, on trial 88 the feedback error was large
and positive, i.e., she underestimated the displacement, so on trial
89 she increased her estimate. The feedback error on this trial was
smaller but still positive, and so on trial 90 her estimate increased
only slightly. However, on trial 90 the feedback error was large
and negative. Hence on trial 91 she decreased her estimate, and so
on. Figure 3 shows a complete run of 102 trials for a typical
subject: the subject’s estimate of the displacement follows the
actual displacement.

Regression analysis of the mean squared errors of subjects
versus those of the ideal observer was first performed separately
for each subject, averaging over the 102 trials per session. The
slopes of these lines were then compared using an ANOVA. This
revealed no significant difference among the subjects (F(3,88) �
1.52; p � 0.22), and hence the subjects’ data were pooled.

Because of the feedback noise (drift and observation noise),
which was present and obvious to the subjects in all trials, one
possible strategy was for subjects to simply move to the target
position under all conditions, i.e., to ignore all feedback and not
attempt to track the drifting displacement. However, the group
average of mean squared errors was small in comparison with the

mean squared displacement, and across the six drift conditions it
averaged 26% (SD 8.6%) of the mean squared feedback displace-
ment. For example, in the highest noise condition of �W � 1.5
and �N � 3, the average mean squared displacement was 86.5

Figure 2. Typical displacement data and one subject’s estimation of the displacement. A,
Typical random walk values Wt over 11 trials are indicated by the bold solid line. Observation
noise Nt (dotted line) was then added to Wt to give the total added displacement Dt (dashed line).
Note how Wt is correlated with Wt�1, whereas Nt is uncorrelated from trial to trial. B, The same
set of trials as in A showing the feedback error, Pt � Tt (�) and the subject’s estimate of the
displacement or Tt � Mt , (F) for each trial. Note how the subject adjusts her estimate of the
displacement over succeeding trials in response to the feedback error. These data are from one
of the high-drift, medium-noise sessions (�N � 1.5 cm; �W � 1.5 cm).

Figure 3. Typical data from a complete run of 102 trials in the high-drift, medium-noise
condition (�N � 1.5 cm; �W � 1.5 cm). Here the subject’s estimate (dotted lines) is shown
against the actual displacement data (solid line). To emphasize the relationship between sub-
ject response and previous error, the displacement data curve has been displaced to the right by
one trial. It therefore represents the performance of a system (Model 1) that estimates the
displacement on trial t from the error observed on trial t � 1.
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cm 2, whereas the group average mean
square error was 19.7 cm 2. Hence subjects
were actively and successfully tracking the
drift component.

Figure 4A shows the group results of
four subjects tested in eight conditions with
different values of �W and �N. The data are
presented as the mean Fisher efficiencies
across conditions in the task. The Fisher ef-
ficiency F is the ratio between the mean
square error of an ideal observer, EI

2 (see Eq.
5), and the mean square error of the subject,
ES

2, when the ideal observer is tested on ex-
actly the same random walk and observa-
tion noise as the subject, i.e.:

F �
EI

2

ES
2 . (16)

Thus subjects were able to achieve very
high levels of efficiency (maximum 73%)
compared with the ideal. It should be em-
phasized that this was not the perfor-
mance of highly trained observers and
that the task was quite natural, requiring
little cognitive control: a conversation
could be maintained at the same time that
the task was being performed. The in-
crease in Fisher efficiencies with increas-
ing displacement noise could simply re-
flect the reduced ability of the ideal
observer under the difficult conditions. It
is true that in the limit, when �N �� �W ,
Fisher efficiency would be high, whereas
absolute performance would be low.
Note, however, that performance was
considerable better than expected if the
subjects did not track the displacement at
all. Furthermore, the Fisher efficiencies
were approximately constant across the
observation noise levels used, suggesting
that they were not dominated by poor
ideal observer performance. Further in-
sight into the nature of the subjects’ efficiency levels was gained
by plotting the subjects’ errors against the error of the ideal ob-
server with the same presentation sequence (Fig. 4B). Here it is
clear that there was a close relationship between ideal perfor-
mance and subject performance, trial by trial. Following Burgess
et al. (1981), we therefore fit a model of the form:

ES
2 � M 
 EI

2 � C. (17)

This model is equivalent to a linear regression and divides sub-
jects’ errors into two components. One is dependent on the dif-
ficulty of the task (Burgess et al., 1981), given by the slope term
M, so that as the amount of noise in the task increases (i.e., as EI

2

increases), subjects’ errors also increase. The second component
is independent of the task and is given by the intercept C, re-
flected in a constant shift of the line above that of the ideal ob-
server. The fit of the model to the data was very good (Fig. 4B,
solid line) (r 2 � 0.811). The slope M was found to be 1.10 [95%
confidence interval (CI): 0.99 –1.21] and was not significantly
different from unity ( p � 0.069; two-tailed t test). However, the
intercept C was significantly different from the value of zero for

the ideal observer (C � 3.67 cm 2; 95% CI: 2.84 – 4.50 cm 2; p �
0.0004).

Hence the main difference of the human data from the ideal is
a constant shift (Fig. 4B), implying that most of the human inef-
ficiency was independent of task difficulty. This inefficiency can
be considered to include inaccurate arm movements, inaccurate
knowledge of the position of the arm, and uncertainties in the
measurement and representation of the displacement, i.e., “ac-
tion noise.” It is not surprising that a human should show some of
these inefficiencies because the ideal observer is assumed to make
accurate measurements, to store estimates with infinite precision,
and to make perfectly accurate movements (an “ideal actor”).
Equation 17 can be rearranged in terms of the Fisher efficiency
(F; see Eq. 16) to yield the curve shown on Figure 4B, against the
right-hand axis. This curve is defined as:

F �
EI

2

M 
 EI
2 � C

. (18)

This illustrates that when there was less noise in the task, i.e.,
when EI

2 was small, the effect intercept C makes the denominator

Figure 4. A, Subjects were very efficient (maximum 73%) at adapting to a random walk (with SD �W ). Data are plotted as
Fisher efficiencies (the ratio of the mean square error of the ideal observer to the mean square error of the subject) across all
conditions (F: no drift �W � 0 cm; �: medium �W � 0.75 cm; Œ: high drift �W � 1.5 cm; mean efficiency �1 SE; n � 12). B,
Subjects’ run-by-run performance versus ideal performance. Subjects’ mean square error is plotted against the corresponding
mean square error of the ideal observer (F, n � 96: 4 subjects � 8 conditions � 3 repetitions); the bold line is the regression. The
dotted line shows the performance of the ideal observer (i.e., slope equals 1 and intercept zero). The curve is an estimate of subjects’
efficiency against the mean square errors of the ideal observer (Eq. 18), plotted against the axis on the right. The level of mean
square error expected if subjects failed to track the drift component for �W �0.75 or 1.5 would be 19.7 and 78.9 cm 2, respectively,
in the absence of observation noise (�N � 0). The mean squared displacement caused only by observation noise (�W � 0) would
be 2.0 and 8.2 cm 2, for �N � 1.5 and 3 cm, respectively. C, Fisher efficiency scores for subjects’ performance when direct vision of
the hand was allowed. The graph is in the same format as in Figure 4 A. D, Run-by-run performance versus the ideal, with data from
sessions with direct vision of the hand (�, n � 96), the regression of this data is shown by the bold dashed line. For comparison,
the regression line from Figure 4 B is also shown (no-vision, solid bold line).

3070 • J. Neurosci., April 1, 2003 • 23(7):3066 –3075 Baddeley et al. • System Identification Applied to Visuomotor Performance



of Equation 18 much larger than the numerator, leading to a
lower efficiency. When EI

2 becomes large, the effect of the con-
stant C becomes negligible and F approaches 1/M. Hence the
upper limit of subjects’ efficiency in the no-vision task would be
1:1.10 or 91%. This ratio also indicates that if the effect of the
“action noise” could be removed (or made negligible, as in the
high noise limit), subjects would be able to use 91% of the avail-
able information to adjust their pointing movements. This con-
stitutes highly efficient performance.

With-vision condition
The hypothesis that some of the subjects’ inefficiency arises from
inaccurate measurements or from inaccurate movements, rather
than from inefficient adaptive processes, was tested by allowing
subjects direct vision of their hand throughout the task. All other
aspects of the task remained identical. Given direct vision, sub-
jects should be more accurate in the control of their movements.
In other words, there would be less noise associated with their
production of movement Ht. They should also be able to make
more accurate measurements of their movement errors (i.e., Pt �
Tt , or by rearranging Eqs. 1 and 6, Dt � Ŵt ) and hence be able to
reduce the noise in their estimate of Ŵt. Therefore we would
expect to see a lower intercept in the error regression analysis
when vision was allowed, indicating less action noise.

The results supported this hypothesis (Fig. 4C,D). As before,
there was no significant difference between the regression results
of the four subjects tested in the direct vision condition (F(3,88) �
1.49; p � 0.22), and again the data were also pooled across
subjects.

The mean square errors were on average 20.5% (SD 5.2%) of
the mean square displacement, and for the highest noise condi-
tion the group average was 17.7 cm 2 compared with the average
mean squared displacement of 86.5 cm 2. The regression of the
group data obtained with direct vision of the hand to the ideal
observer data was very strong (Fig. 4D, dashed line) (r 2 �
0.896) and had a slope of M � 1.24 (95% CI: 1.15–1.32; signif-
icantly greater than unity) and an intercept of C � 1.10 cm 2 (95%
CI: 0.48 –1.72 cm 2). An ANOVA showed that the slope in the
no-vision condition did not differ significantly from that in the
with-vision condition (M � 1.24 vs 1.1; Student’s t test on
slopes; t188 � 1.943; p � 0.054). Although close to being sig-
nificantly different, the 95% confidence levels in the two condi-
tions do overlap. In contrast, the intercept with direct vision of
the hand was clearly below that when vision of the hand was
denied (C � 1.1 vs 3.67 cm 2; Student’s t test on intercept; t188 �
5.83; p 	 0.0001), and the 95% confidence intervals did not
overlap. Hence there was a significant decrease in the level of
action noise when subjects had direct vision of their hand, possi-
bly combined with a smaller increase in error that was dependent
on task difficulty.

System identification
We now compare the trial-by-trial performance from our human
subject group with that of five models (see Materials and Meth-
ods). Data from one additional subject were available and are
included here. The average cross-validated errors for each model
are given in Table 1 with statistical significance of the improve-
ment of fit of each model tested.

The average cross-validated error for the Null model (Model
1, “correct the last error”) was 4.147 cm 2 (see example data in Fig.
3). This is the baseline against which the other more complex
models are compared. The delta rule (Model 2) then provided a
significantly better fit to the data with an average cross-validation

error of 2.684 cm 2 (t119 � 9.415; p 	 10 �13). Subjects are
therefore taking more than the last error into account. Because a
Kalman filter is the ideal observer in this task, we next tested its
predictions as a model of their responses (Model 3). We found
the best fitting constant estimates of �̂N and �̂W for each subject
optimized across all eight conditions, not the true variances that
varied between conditions. This fixed Kalman filter did not pro-
vide a significantly better fit than the delta rule (mean squared
error of 2.683 vs 2.684 cm 2; t119 � 0.513; p � 0.6). The reason
for this is that given reasonable initial estimates of the Kalman
filter parameters �̂N and �̂W , the value of the Kalman gain (Kt )
stabilizes after only a few trials. Hence for most of the run, once Kt

was stable, the Kalman filter and delta rule were equivalent, and
the correlation coefficient between their predictions was r 2 �
0.999.

The finite impulse response model (Model 4) provided a sig-
nificant improvement in fitting the human data over both the
Kalman filter and the delta rule, with a mean squared cross-
validated error of 2.45 cm 2 (t119 � 6.120; p 	 1.2 � 10 �8)
(Table 1). Figure 5 shows the mean weighting coefficients of the
optimally fitting filter from five subjects and, for comparison, the
mean weightings for the best fitting delta rule model of each
subject’s data. The difference among the models is that the sum of
all the exponentially decaying weightings of previous errors for
either a delta rule or a Kalman filter is constrained to be one (Eq.
8). In contrast, for the finite impulse response model, the sum of
the weighting was on average only 0.91.

The modified delta rule (Model 5) takes into account both the
visual errors and some other error signal (which we assume is
from proprioception) that always indicates there is no true error
in that modality. Optimizing this model across the different sub-
jects gave an average estimate of �� � 0.9, �p � 0.1. In other
words, visual information was weighted more (90% contribution
to the final prediction) than the uninformative proprioceptive
information (which contributed only 10% to the final predic-
tion). The mean squared error for this modified delta rule model
was close to that of the finite impulse response model (2.48 vs
2.45 cm 2; t119 � 1.182; p � 0.24). Thus, once the effect of an
inappropriate proprioceptive weighting was taken into account,
an effect that pulls subjects’ estimates of the displacement back
toward zero, the highly constrained modified delta rule model
with two free parameters provided a fit to the human data that

Table 1. Statistical comparison of the fit of models to human performance

Comparisons are made with Student’s t tests; df � 119; n � 5 subjects.
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was not significantly worse than that of the finite impulse re-
sponse model, which had many more free parameters.

Testing the linearity assumption
Although the modified delta rule is the best linear approximation
to the full dataset, it is important to test for significant nonlin-
earities. We tested for linearity in two ways. First we tested
whether there was any significant structure in the residuals (�t ).
If the model captured everything except noise, then the difference
between the best linear model (the modified delta rule) and
the subjects’ data would be random and uncorrelated. Hence
one way to test for nonlinearity is to test whether the residuals
are correlated, known as a test of whiteness (Ljung, 1999). To
do this we calculated the value �N,M from the sum of the
residual correlations R̂�

N(�) separated by a spacing of � over all
N (12240) trials:

R̂�
N��� �

1

N�
t�1

N

�t�t�� , (19)

�N,M �
N

R̂�
N�0�2�

t�1

M

�R̂�
N����2 . (20)

We summed these residual autocorrelations separated by be-
tween M � 1 . . . 10 time steps. The value of �N,M under the null
hypothesis of no correlations should be �2 distributed (Ljung,
1999), but the residuals for the best-fitting modified delta rule
showed highly significant residual–residual correlations (�N,10 �
1420; p 	 0.001). The next sections try and place constraints on
the nature of the nonlinearity.

Static (time invariant) nonlinearities
Figure 6 shows a density plot (averaged over all subjects) of the
displacement Dt plotted against the inferred subjects estimate
from this displacement Ŵt�1. Also shown is the best linear fit
together with the best third order polynomial. This plot shows
the input– output characteristics of the system and would, if
present, reveal a simple time invariant nonlinearity. There was
no evidence for such a nonlinearity, with the input– output
behaviour captured by a linear relationship and other terms
being not significantly different from zero (cubic term 1.37 �

10 �5 x 3; p � 0.79 and the quadratic term 5.99 � 10 �3 x 2; p �
0.16).

A second check for significant static nonlinearity is to deter-
mine whether a predictor that allowed simple nonlinearities
would provide a better fit to the data than that of a linear predic-
tor. To test this we fitted a standard mixture of experts model
(Jacobs et al., 1991), in which two “experts” were each a propri-
oceptive modified delta rule model. By combining a mixture of
two linear estimators, we can derive a nonlinear estimator of Ŵt

that can change its characteristics dependent on Dt. This mixture
of experts showed no significant improvement in fit over the
simple linear single expert (mean squared error 2.4701 cm 2;
comparison with single modified delta rule t � 1.182; p �
0.24). The mixture model in fact converged to a solution in
which the predicted output was correlated with that of the simple
linear model at the r 2 � 0.996 level. This analysis does not rule
out the effects of complex static nonlinearities but shows that
they are either not simple or not large in this data.

Temporal non-linearities
An alternative possibility is that the characteristics of the control
process change over time (i.e., over condition) in an input-
dependent manner. This type of nonlinearity would allow for
changes in the algorithm parameters dependent on the specific
task condition. To test for this we remodeled the data on a
condition-by-condition basis. If there are temporal nonlineari-
ties, then the individual conditions will be better fit by different
parameters. We modeled each subject’s data under each con-
dition with the modified delta rule and tested whether there
was a significant effect of condition on the best-fitting learning
rate parameter K. The results are shown in Figure 7, and an
ANOVA showed a significant effect of condition on best-
fitting weights (F(7,112) � 40.1; p 	 0.001). Hence the statis-
tics of the input have a strong influence on the processing that
the subjects use.

Figure 5. The average coefficients for the best 16-point finite impulse response filter fitted
to each subject’s data (solid line, with 1 SEM). The fine line shows the average exponential
weighting found by the delta rule fits (Model 2). FIR Step, Finite impulse response coefficient
number (Eq. 9).

Figure 6. A density plot of the applied displacement Dt�1 plotted against the subjects’
estimate of drift Ŵt. A linear regression and polynomial regression line are superimposed: for
the latter, all terms higher than linear were nonsignificant.
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Discussion
We have attempted to make the experimental perturbations forc-
ing human sensorimotor recalibration more representative of the
real world, and in doing so we observed high-efficiency measures
relative to the ideal performance. Figure 8 shows the highest ab-
solute efficiency values previously reported for different visual
and auditory tasks in human observers, along with the highest
Fisher efficiency found in the present study. As we and Burgess et

al. (1981) have shown, this absolute efficiency score includes two
distinct aspects of subjects’ performance in the task. First, it as-
sesses the magnitude of the unavoidable action noise associated
with performing the task, e.g., stimulus detection, response pro-
gramming, controlling action execution, etc. However, we were
mainly interested in the second aspect, the efficiency of the algo-
rithm that subjects were using, and the regression analysis slope
M represents this (Fig. 4B,D). It allows us to determine the fun-
damental efficiency limit in the task given by 1/M. In the present
study, this upper efficiency limit was 91% for the no-vision con-
dition (81% for the with-vision condition). The study with the
highest efficiency previously reported in the literature also com-
pleted a similar regression analysis (Burgess et al., 1981) and
reported a limiting efficiency of 83%. Without access to the raw
data of the other studies, we cannot determine the limit of their
efficiency measures. However, because all of the results in Figure
8 are the maximum values from tests over a number of condi-
tions, it seems reasonable to suggest that these maxima will at
least partly reflect the limiting efficiency of each underlying
algorithm. Of course, comparison of efficiencies across very
different perceptual and motor tasks is problematic. Although
the Fisher efficiency reflects the human performance relative
to the ideal observer for each task, our comparison neglects
any differences in the complexity of the algorithm used. We
look forward to further use of ideal observer analysis in motor
control (ideal actor analysis), so that more direct comparisons
can be made.

The previously reported high-efficiency value was for the de-
tection of two cycles of a sinusoidally varying luminance pattern
superimposed on a background of noise (Burgess et al., 1981)
(Fig. 8, column X). This is known to match the receptive field
properties of neurons in V1, the earliest cortical area involved in
vision, and Burgess et al. (1981) suggested that their high effi-
ciency was caused by the close match between their stimulus and
the V1 receptive properties. Extending this logic, the high effi-
ciencies that we found should place constraints on any theoretical
model or explanation of how subjects adjust their visuomotor
mapping. Hence, there may be neural mechanisms in the motor
system tuned to process and integrate movement errors over
time. The predicted characteristics of such a system would be as
follows: first, a neural representation of previous errors in the
form of some memory trace; second, an approximately exponen-
tial weighting of these errors over time or trials to form the new
estimate; and third, a mechanism to change the time or trial
constant of the exponential weighting dependent on input statis-
tics. We propose that the human motor system implements tem-
poral filters to estimate the sensorimotor mapping as it alters
throughout our lifetime.

In the current study the ideal observer had an advantage over
the tested subjects because it was provided with the exact infor-
mation about the drift and noise values generating each sequence.
Instead, the human subjects had to estimate these parameters.
However, we also show that the humans appear to adjust their
adaptation process according to the specific task conditions (Fig.
7), a feature not included in our relatively simple models. So, after
estimating the current noise conditions, subjects then adjust their
learning rate (the weighting given to previous input errors), and
we imagine that this tuning would be a continuous process. We
are currently working on Bayesian algorithms to automatically
estimate an appropriate learning rate for a given environment.
Previous studies using perturbed visual feedback of arm
movements have also demonstrated similar effects: very noisy
feedback is discounted (Liu et al., 1999), and sudden sensory

Figure 7. A plot of the learning rate parameter K (mean n � 5; �1 SD) for the best fitting
modified delta rule models, calculated condition by condition for each subject. The best learning
rate varied across the three levels of random walk variance tested; in comparison, the human
efficiency measures were stable across observation noise levels (Fig. 4 A, C).

Figure 8. The highest reported human efficiencies in a number of tasks. Vision tasks are
presented in light gray, auditory tasks in dark gray, and the single motor study (present results)
in black. I, Recognizing three-dimensional (3D) objects in luminance noise (Tjan et al., 1995); II,
3D object classification (Liu et al., 1995); III, global direction of dynamic random dots (Watama-
niuk, 1993); IV, heading judgements (Crowell and Banks, 1996); V, detection of complex signals
as a function of signal bandwidth and duration (Creelman, 1961); VI, letter discrimination
(Parish and Sperling, 1991); VII, coherent visual motion (Barlow and Tripathy, 1997); VIII, dis-
crimination of random, time-varying auditory spectra (Lufti, 1994); IX, discrimination of tonal
frequency distributions (Berg, 1990); X, discrimination of the amplitude of a spatial sinusoid
(Burgess et al., 1981); XI, data from the present study. The efficiency reported in the present
study is higher than those reported previously.
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perturbations may lead to incomplete adaptation because the
perturbation is not credible as feedback (Kagerer et al., 1997;
Ingram et al., 2000).

Thus the ideal observer’s advantage (correct drift and noise
values before each condition) was offset by the apparent rapid
human estimation of the appropriate weighting. Of course, in the
real world the amount of noise in the environment might change
depending on conditions. For example, the mapping between
visual input and muscle output might drift faster during fatigue
or during a period of hard exercise than during a rest period.
Despite this, our subjects’ performance efficiency was relatively
independent of the observation noise (�W

2 ), particularly at higher
levels of drift (Fig. 4A). So, given their robustness to changes in
observation noise rates between sessions, and their apparent
rapid adjustment of the weighting parameters, we would not ex-
pect that varying the noise within an experimental session would
have a large effect on our performance measures.

There have been few previous reports of such a perturbation.
Most previous studies investigating visuomotor adaptation have
used a single large step change as the manipulation. It is difficult
to determine the appropriate ideal observer for a step change, and
thus it is difficult to compute an efficiency measure comparable
with those presented here. However, previous work on adapta-
tion to angular rotation of visual feedback (Kagerer et al., 1997)
or to a change in visual feedback gain (Ingram et al., 2000) has
shown that subjects perform better and adapt more when the
perturbation is introduced in small incremental steps than in one
large change. We interpret this improvement as the result of us-
ing more natural, gradually changing stimuli. Of course, our
finding that human performance exponentially weights previous
errors fits well with the frequently reported exponential adapta-
tion curves seen after step perturbations (Kargerer et al., 1997;
Ingram et al., 2000). In comparison with our data (Figs. 5, 7), the
exponentially decaying weighting curves would be expected to be
steeper for the low noise conditions typically used by others,
where averaging over trials is less advantageous, whereas these
weightings would be suboptimal in the face of significant drift
and observation noise.

Finally, we suggest that the slope of the regression line between
ideal and human performance (Fig. 4B,D) reflects the quality of
the underlying algorithm that subjects use to perform the task,
once unavoidable action noise leading to a positive regression
intercept is discounted. In our task, this slope was just above
unity (in the with-vision task, it was significantly higher than
unity, M � 1.24, but not significantly greater than the no-vision
condition, M � 1.1). Both slopes suggest a small increase in
errors above the ideal with increasing task difficulty. For the op-
timal Kalman filter algorithm, the slope would be unity; hence
the subjects were performing much like the ideal algorithm for
this task. Human visuomotor performance has previously be lik-
ened to Kalman filtering (Borah et al., 1988; Wolpert et al., 1995),
but our system identification modeling suggests that the modi-
fied delta rule provided a significantly better fit than the Kalman
filter. Further experiments will be needed to address these poten-
tial differences. The Kalman filter weights the current estimate
and each new measurement in the calculation of the new esti-
mate, according to the relative confidence in each. In the modi-
fied delta rule, similar performance is achieved by adjusting the
weighting or learning rate term K (Eq. 14), and this appears to be
different for each noise condition (Fig. 7). In practice, the human
performance appears to be limited by what we term action noise
(uncertainty about the true position of the hand with respect to
the cursor and errors in reaching the exact position selected), plus

possible neural computational and execution noise, rather than
by the adaptive process itself.

In summary, these results suggest that human performance in
this changing sensorimotor task could be well fit by either a Kal-
man filter or a simple model based on the delta learning rule.
These use an exponential weighting of previous movement er-
rors, which provide noisy information about the applied pertur-
bation, to update an estimate of the current displacement. How-
ever, a finite impulse response model achieved an even better fit,
and the main difference between these models is that the sum of
the FIR model weights was only 0.91, and not unity, unlike the
Kalman filter or delta rule model. Thus a modified delta rule, in
which a second, uninformative input acted to reduce the weight
of the visual input to 0.9, achieved an equally good fit to the FIR
model, with many fewer free parameters. We speculate that the
second input used by the modified delta rule would be proprio-
ception, which in this task would not provide useful information
about the visual perturbation but would act to reduce the weight-
ing given to visual errors in position (Welch and Warren, 1986;
van Beers et al. 1999).
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